Accurate High-Performance Route Planning

Peter Sanders

Dominik Schultes

Institut für Theoretische Informatik - Algorithmik II Universität Karlsruhe (TH)

```
http://algo2.iti.uka.de/schultes/hwy/
```

Aachen, June 12, 2006

Route Planning

Goals:

exact shortest (i.e. fastest) paths in large road networksfast queriesfast preprocessinglow space consumption
Applications:

\square route planning systems in the internetcar navigation systems
\square ...

Our Approach: Highway Hierarchies ${ }^{1}$

\square complete search within a local areasearch in a (thinner) highway network

$=$ minimal graph that preserves all shortest paths
\square contract network, e.g.,

\square iterate \rightsquigarrow highway hierarchy

[^0]
Local Area

\square choose neighbourhood radius $r(s)$ (by a heuristic)
\square define neighbourhood of s

$$
\mathcal{N}(s):=\{v \in V \mid d(s, v) \leq r(s)\}
$$

Highway Network

Edge (u, v) belongs to highway network iff there are nodes s and t s.t.
$\square(u, v)$ is on the "canonical" shortest path from s to t and
$\square(u, v)$ is not entirely within $\mathfrak{N}(s)$ or $\mathcal{N}(t)$

Improvements ${ }^{2}$

\square support of directed graphsmore general and more effective contraction
\square simpler query algorithm
\square faster preprocessing, faster queries, less memory usageper-instance worst case performance guarantees

2 to be presented at ESA 2006

Neighbourhood Radii

small changes do not significantly affect the performance
\rightsquigarrow lossy compression can be applied
(e.g. a simple linear mapping)
first experiments indicate: only 8 bits are sufficient
(in case of more sophisticated mappings, even less?)

Contraction

Contraction

Which nodes should be bypassed?

Use some heuristic taking into account
\square the number of shortcuts that would be created and
\square the degree of the node.

Optimisation: Distance Table

Construction:

\square Construct fewer levels.
e.g. 4 instead of 9
\square Compute an all-pairs distance table for the topmost level L.
8776×8776 entries

Query:

\square Abort the search when all entrance points in the core of level L have been encountered. ≈ 70 for each direction
\square Use the distance table to bridge the gap.
$\approx 70 \times 70$ entries

Worst Case for Europe: 8806 settled nodes (< 0.05% of all nodes)

Future Work

\square combination with goal directed approaches
fast, local updates on the highway network (e.g. for traffic jams)
\square Implementation for mobile devices (flash access ...)Flexible objective functions

[^0]: ${ }^{1}$ presented at ESA 2005

