

Accurate High-Performance Route Planning

Peter SandersDominik Schultes

Institut für Theoretische Informatik – Algorithmik II Universität Karlsruhe (TH)

http://algo2.iti.uka.de/schultes/hwy/

Aachen, June 12, 2006

Route Planning

Goals:

exact shortest (i.e. fastest) paths in large road networks

□ fast queries

- fast preprocessing
 - Iow space consumption

Applications:

- □ route planning systems in the internet
 - car navigation systems

Our Approach: Highway Hierarchies¹

complete search within a local area

search in a (thinner) highway network

= minimal graph that preserves all shortest paths

contract network, e.g.,

iterate \rightsquigarrow highway hierarchy

Local Area

choose neighbourhood radius r(s)

(by a heuristic)

 \Box define neighbourhood of *s*

$$\mathcal{N}(s) := \{ v \in V \mid d(s, v) \le r(s) \}$$

Edge (u, v) belongs to highway network *iff* there are nodes *s* and *t* s.t.

 \Box (*u*,*v*) is on the "*canonical*" shortest path from *s* to *t* and

$$\Box$$
 (*u*,*v*) is not entirely within $\mathcal{N}(s)$ or $\mathcal{N}(t)$

support of directed graphs

more general and more effective contraction

simpler query algorithm

faster preprocessing, **faster** queries, **less** memory usage

per-instance worst case performance guarantees

 $^{^{2}}$ to be presented at ESA 2006

Neighbourhood Radii

small changes do not significantly affect the performance

- \rightsquigarrow lossy compression can be applied
 - (e.g. a simple linear mapping)

first experiments indicate: only 8 bits are sufficient (in case of more sophisticated mappings, even less?)

Which nodes should be **bypassed**?

Use some heuristic taking into account

the number of shortcuts that would be created and

the degree of the node.

Optimisation: Distance Table

Construction:

Compute an all-pairs distance table for the topmost level L. 8776×8776 entries

Query:

Abort the search when all entrance points in the core of level L have been encountered. \approx 70 for each direction

Use the distance table to bridge the gap. \approx 70 \times 70 entries

10

Worst Case for Europe: 8 806 settled nodes (< 0.05% of all nodes)

12

Future Work

combination with goal directed approaches

fast, local updates on the highway network
(e.g. for traffic jams)

Implementation for mobile devices
(flash access ...)

Flexible objective functions

