Route Planning in Road Networks

- simple, flexible, efficient -

Peter Sanders Dominik Schultes

Institut für Theoretische Informatik - Algorithmik II
Universität Karlsruhe (TH)
http://algo2.iti.uka.de/schultes/hwy/
Berlin, December 10, 2007

Task:

In a given road network, determine an optimal route from a given source to a given target

Route Planning

Applications:

\square route planning systems in the internet, car navigation systems,
\square traffic simulation, logistics optimisation

DIJKSTRA's Algorithm

the classic solution [1959]
$O(n \log n+m)$ (with Fibonacci heaps)

Speedup Techniques

that are faster than Dijkstra's algorithm
\square require additional data
(e.g., node coordinates)
not always available!
AND / OR
\square preprocess the graph and generate auxiliary data
(e.g., 'signposts’)
can take a lot of time; assume many queries;
assume static graph or require update operations!
AND / OR
\square exploit special properties of the network
(e.g., planar, hierarchical)
fail when the given graph has not the desired properties!
\rightsquigarrow not a solution for general graphs,
but can be very efficient for many practically relevant cases

Speedup Techniques

\square require additional data
(e.g., node coordinates)

AND / OR
\square preprocess the graph and generate auxiliary data (e.g., 'signposts’)

AND / OR
\square exploit special properties of the network
(e.g., planar, hierarchical)

Sanders/Schultes: Route Planning

Goals

fast queries\square
accurate results
\square scale invariant / support all types of queries
\square fast preprocessing / deal with large networkslow space consumptionfast update operationssimple

Overview

Highway Hierarchies

Construction: iteratively alternate between
\square removal of low degree nodes
\square removal of edges that only appear on shortest paths close to source or target
yields a hierarchy of highway networks

in a sense, classify roads / junctions by 'importance’

Highway Hierarchies

foundation for our other methodsdirectly allows point-to-point queries13 min preprocessing$\square 0.61 \mathrm{~ms}$ to determine the path length

\square (0.80 ms to determine a complete path description)
\square reasonable space consumption (48 bytes/node)
can be reduced to 17 bytes/node

Highway Hierarchies Star

joint work with D. Delling, D. Wagner
[DIMACS Challenge 06]combination of highway hierarchies with goal-directed searchslightly reduced query times (0.49 ms)more effective

- for approximate queries or
- when a distance metric instead of a travel time metric is used

Many-to-Many Shortest Paths

joint work with S. Knopp, F. Schulz, D. Wagner [ALENEX 07]

Given:

\square graph $G=(V, E)$set of source nodes $S \subseteq V$
\square set of target nodes $T \subseteq V$

Task: compute $|S| \times|T|$ distance table containing the shortest path distances
\square e.g., 10000×10000 table in 23 seconds

Transit-Node Routing

[DIMACS Challenge 06, ALENEX 07, Science 07]
joint work with H. Bast, S. Funke, D. Matijevic
\square very fast queries (down to $4 \mu s,>1000000$ times faster than DIJKSTRA)

\square winner of the 9th DIMACS Implementation Challenge
\square more preprocessing time (1:15 h) and space (247 bytes/node) needed

Transit Node Routing

Transit-Node Routing

First Observation:

For long-distance travel: leave current location
via one of only a few 'important' traffic junctions, called access points [in Europe ≈ 10]
$(\rightsquigarrow$ we can afford to store all access points for each node)

Second Observation:

Each access point is relevant for several nodes. \rightsquigarrow
union of the access points of all nodes is small, called transit node set [in Europe ≈ 10000]
$(\rightsquigarrow$ we can afford to store the distances between all transit node pairs)

Transit-Node Routing

Query: usually only a few table lookups

Highway-Node Routing

1. basic concepts: overlay graphs, covering nodes
2. lightweight, efficient static approach
3. dynamic version

1. Basic Concepts

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]
\square graph $G=(V, E)$ is given
\square select node subset $S \subseteq V$

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]
\square graph $G=(V, E)$ is given
\square select node subset $S \subseteq V$

\square overlay graph $G^{\prime}:=\left(S, E^{\prime}\right)$
determine edge set E^{\prime} s.t. shortest path distances are preserved

Minimal Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]
\square graph $G=(V, E)$ is given
\square select node subset $S \subseteq V$

\square minimal overlay graph $G^{\prime}:=\left(S, E^{\prime}\right)$ where
$E^{\prime}:=\{(s, t) \in S \times S \mid$ no inner node of the shortest s - t-path belongs to $S\}$

Covering Nodes

Definitions:

\square covered branch: contains a node from S
\square covered tree: all branches covered
\square covering nodes: on each branch, the node $u \in S$ closest to the root s

Query: Intuition

\square bidirectional
\square perform search in G till search trees are covered by nodes in S

Query: Intuition

\square bidirectional
\square perform search in G till search trees are covered by nodes in S
\square continue search only in G^{\prime}

Overlay Graph: Construction

for each node $u \in S$
\square perform a local search from u in G
\square determine the covering nodes
\square add an edge (u, v) to E^{\prime} for each covering node v

Covering Nodes

Conservative Approach:

\square stop searching in G when all branches are covered
can be very inefficient

Covering Nodes

Aggressive Approach:

\square do not continue the search in G on covered branches
can be very inefficient

Covering Nodes

Compromise:

\square introduce parameter p
\square do not continue the search in G on branches that already contain p nodes from S
\square in addition: stop when all branches are covered
$\square p=1 \rightarrow$ aggressive
$\square p=\infty \rightarrow$ conservativeworks very well in practice

2. Static Highway-Node Routing

Static Highway-Node Routing

extend ideas from- multi-level overlay graphs
[HolzerSchulzWagnerWeiheZaroliagis00-07]
- highway hierarchies
- transit node routing
[BastFunkeMatijevicSS06-07]
\square use highway hierarchies to classify nodes by 'importance'
i.e., select node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots \supseteq S_{L}$
(crucial distinction from previous separator-based approach)
\square construct multi-level overlay graph
$G_{0}=G=(V, E), G_{1}=\left(S_{1}, E_{1}\right), G_{2}=\left(S_{2}, E_{2}\right), \ldots, G_{L}=\left(S_{L}, E_{L}\right)$
(just iteratively construct overlay graphs)

Static Highway-Node Routing

extend ideas from- multi-level overlay graphs
[HolzerSchulzWagnerWeiheZaroliagis00-07]
- highway hierarchies
[SS05-06]
- transit node routing
[BastFunkeMatijevicSS06-07]
\square use highway hierarchies to classify nodes by 'importance' i.e., select node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots \supseteq S_{L}$
(crucial distinction from previous separator-based approach)
\square construct multi-level overlay graph 2 min
$G_{0}=G=(V, E), G_{1}=\left(S_{1}, E_{1}\right), G_{2}=\left(S_{2}, E_{2}\right), \ldots, G_{L}=\left(S_{L}, E_{L}\right)$
(just iteratively construct overlay graphs)
(experiments with a European road network with ≈ 18 million nodes)

Query: Aggressive Variant

\square node level $\ell(u):=\max \left\{\ell \mid u \in S_{\ell}\right\}$
\square forward search graph $\overrightarrow{\mathcal{G}}:=\left(V,\left\{(u, v) \mid(u, v) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right)$
\square backward search graph $\overleftarrow{G}:=\left(V,\left\{(u, v) \mid(v, u) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right)$
\square perform one plain Dijkstra search in $\overrightarrow{\mathcal{G}}$ and one in $\overleftarrow{\mathcal{G}}$

Proof of Correctness

Level 2

Level 1

shortest path from s to t in $G=G_{0}$

Proof of Correctness

Level 2

overlay graph G_{1} preserves distance from $s_{1} \in S_{1}$ to $t_{1} \in S_{1}$

Proof of Correctness

overlay graph G_{2} preserves distance from $s_{2} \in S_{2}$ to $t_{2} \in S_{2}$

Sanders/Schultes: Route Planning

Proof of Correctness

$$
\begin{aligned}
& \overrightarrow{\mathcal{G}}:=\left(V,\left\{(u, v) \mid(u, v) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right) \\
& \overleftarrow{\mathcal{G}}:=\left(V,\left\{(u, v) \mid(v, u) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right)
\end{aligned}
$$

Stall-on-Demand

\square a node v can 'wake' an already settled node u
$\square u$ can 'stall' v

$$
\text { (if } \boldsymbol{\delta}(u)+w(u, v)<\boldsymbol{\delta}(v))
$$

i.e., search is not continued from v
fast road

\square stalling can propagate to adjacent nodes
\square does not invalidate correctness (only suboptimal paths are stalled)

Stall-on-Demand

```
const NodeID index = isReached(searchID, v);
if (edge.isDirected(1-dir) && index) {
    const PQData& data = pqData(searchID, index);
    EdgeWeight vKey = data.stalled() ? data.stallKey() : pqKey(searchID,index);
    if (vKey + edge.weight() < parentDist) {
        pqData(searchID, parent.index).stallKey(vKey + edge.weight());
        queue< pair<NodeID, EdgeWeight> > _stallQueue;
        _stallQueue.push(pair<NodeID,EdgeWeight>(parent.nodeID,vKey+edge.weight ()));
        while (! _stallQueue.empty()) {
            u = _stallQueue.front().first;
            key = _stallQueue.front().second;
            _stallQueue.pop();
            for (EdgeID e = _graph->firstEdge(u); e < _graph->lastEdge(u); e++) {
            const Edge& edge = _graph->edge(e);
            if (! edge.isDirected(searchID)) continue;
            NodeID index = isReached(searchID, edge.target());
            if (index) {
                const EdgeWeight newKey = key + edge.weight();
                    if (newKey < pqKey(searchID, index)) {
                        PQData& data = pqData(searchID, index);
                        if (! data.stalled()) {
                        data.stallKey(newKey);
                _stallQueue.push(pair<NodeID,EdgeWeight>(edge.target(), newKey));
        } } } } }
        return;
} }
```


Example: Berlin \rightarrow Karlsruhe

Example: Berlin \rightarrow Karlsruhe

Local Queries

Per-Instance Worst-Case Guarantee

$\max =2148$ nodes

Memory Consumption / Query Time

different trade-offs between memory consumption and query time

for example:

$\square 9.5$ bytes per node overhead $\longrightarrow 0.89 \mathrm{~ms}$ store complete multi-level overlay graph
$\square 0.7$ bytes per node overhead $\rightarrow 1.44 \mathrm{~ms}$ store only forward and backward search graph $\overrightarrow{\mathcal{G}}$ and $\overleftarrow{\mathcal{G}}$
$(\overrightarrow{\mathcal{G}}$ and $\overleftarrow{\mathcal{G}}$ are independent of s and $t)$

3. Dynamic Highway-Node Routing

Dynamic Scenarios

\square change entire cost function
(e.g., use different speed profile)

\square change a few edge weights (e.g., due to a traffic jam)

Constancy of Structure

Assumption:

\square structure of road network does not change
(no new roads, road removal = set weight to ∞)
\rightsquigarrow not a significant restriction
\square classification of nodes by 'importance' might be slightly perturbed, but not completely changed
(e.g., a sports car and a truck both prefer motorways)
\leadsto performance of our approach relies on that (not the correctness)

Dynamic Highway-Node Routing

change entire cost function

\square keep the node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
\square recompute the overlay graphs

speed profile	default	fast car	slow car	slow truck	distance
constr. [min]	$1: 40$	$1: 41$	$1: 39$	$1: 36$	$3: 56$
query [ms]	1.17	1.20	1.28	1.50	35.62
\#settled nodes	1414	1444	1507	1667	7057

Dynamic Highway-Node Routing

change a few edge weights

\square server scenario: if something changes,

- update the preprocessed data structures
- answer many subsequent queries very fast

mobile scenario: if something changes,
- it does not pay to update the data structures
- perform single 'prudent' query that takes changed situation into account

Dynamic Highway-Node Routing

change a few edge weights, server scenario

\square keep the node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
\square recompute only possibly affected parts of the overlay graphs

- the computation of the level- ℓ overlay graph consists of $\left|S_{\ell}\right|$ local searches to determine the respective covering nodes
- if the initial local search from $v \in S_{\ell}$ has not touched a now modified edge (u, x), that local search need not be repeated
- we manage sets $A_{u}^{\ell}=\left\{v \in S_{\ell} \mid v\right.$'s level- ℓ preprocessing might be affected when an edge (u, x) changes $\}$

Dynamic Highway-Node Routing

change a few edge weights, server scenario

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

1. keep the node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
2. keep the overlay graphs
3. $C:=$ all changed edges
4. use the sets A_{u}^{ℓ} (considering edges in C) to determine for each node v a reliable level $r(v)$
5. during a query, at node v
\square do not use edges that have been created in some level $>r(v)$
\square instead, downgrade the search to level $r(v)$ (forward search only)

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

reliable levels: $r(x)=0, \quad r\left(s_{2}\right)=r\left(t_{2}\right)=1$

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

iterative variant (provided that only edge weight increases allowed)

1. keep everything (as before)
2. $C:=\emptyset$
3. use the sets A_{u}^{ℓ} (considering edges in C) to determine for each node v a reliable level $r(v)$ (as before)
4. 'prudent' query (as before)
5. if shortest path P does not contain a changed edge, we are done
6. otherwise: add changed edges on P to C, repeat from 3 .

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

		single pass	iterative			
\|change set		affected	query time	query time	\#terations	
(motorway edges)	queries	$[\mathrm{ms}]$	$[\mathrm{ms}]$	avg	max	
1	0.4%	2.3	1.5	1.0	2	
10	5.8%	8.5	1.7	1.1	3	
100	40.0%	47.1	3.6	1.4	5	
1000	83.7%	246.3	25.3	2.7	9	

Unidirectional Queries

1. keep everything (as before)
2. $C:=\{$ some edge $(t, x)\}$
3. use the sets A_{u}^{ℓ} (considering edges in C) to determine for each node v a reliable level $r(v)$ (as before)
4. 'prudent' query (as before)

Sanders/Schultes: Route Planning

Unidirectional Queries

reliable levels: $r\left(t_{1}\right)=0, \quad r\left(t_{2}\right)=1$

Summary

\square efficient static approach

- fast preprocessing / fast queries
- outstandingly low memory requirements 0.7 bytes $/$ node $\rightsquigarrow 1.4 \mathrm{~ms}$
\square can handle practically relevant dynamic scenarios
- change entire cost function
typically < 2 minutes
- change a few edge weights
* update data structures
$2-40 \mathrm{~ms}$ per changed edge OR
* iteratively bypass traffic jams e.g., 3.6 ms in case of 100 traffic jams
numbers refer to the Western European road network with 18 million nodes and to our 2.0 GHz AMD Opteron machine

Work in Progress

\square find simpler / better ways to determine the node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
\square parallelise the preprocessing
\square implementation for a mobile device

Future Work

handle a massive amount of updates\square deal with time-dependent scenarios
(where edge weights depend on the time of day)

\square allow multi-criteria optimisations

