Route Planning in Road Networks

- simple, flexible, efficient -

Dominik Schultes Peter Sanders

Institut für Theoretische Informatik - Algorithmik II Universität Karlsruhe (TH)

```
http://algo2.iti.uka.de/schultes/hwy/
```

Bertinoro, October 1, 2007

Static Route Planning in Road Networks

Task: determine quickest route from source to target location

Problem: for large networks, simple algorithms are too slow

Assumption: road network does not change

Conclusion: use preprocessed data to accelerate source-target-queries (research focus during the last years [\rightarrow e.g., 9th DIMACS Challenge]) \rightsquigarrow correctness relies on the above assumption

Dynamic Scenarios

\square change entire cost function (e.g., use different speed profile)

\square change a few edge weights (e.g., due to a traffic jam)

Constancy of Structure

Weaker Assumption:

\square structure of road network does not change
(no new roads, road removal = set weight to ∞)
\rightsquigarrow not a significant restriction
\square classification of nodes by 'importance' might be slightly perturbed, but not completely changed
(e.g., a sports car and a truck both prefer motorways)
\leadsto performance of our approach relies on that (not the correctness)

Highway-Node Routing

1. basic concepts: overlay graphs, covering nodes
2. lightweight, efficient static approach
3. dynamic version

4. many-to-many extension

1. Basic Concepts

Schultes/Sanders: Route Planning

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]
\square graph $G=(V, E)$ is given
\square select node subset $S \subseteq V$

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]
\square graph $G=(V, E)$ is given
\square select node subset $S \subseteq V$

\square overlay graph $G^{\prime}:=\left(S, E^{\prime}\right)$
determine edge set E^{\prime} s.t. shortest path distances are preserved

Minimal Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]
\square graph $G=(V, E)$ is given
\square select node subset $S \subseteq V$

\square minimal overlay graph $G^{\prime}:=\left(S, E^{\prime}\right)$ where
$E^{\prime}:=\{(s, t) \in S \times S \mid$ no inner node of the shortest s - t-path belongs to $S\}$

Covering Nodes

Definitions:

\square covered branch: contains a node from S
\square covered tree: all branches covered
\square covering nodes: on each branch, the node $u \in S$ closest to the root s

Query: Intuition

\square bidirectional
\square perform search in G till search trees are covered by nodes in S

Query: Intuition

\square bidirectional
\square perform search in G till search trees are covered by nodes in S
\square continue search only in G^{\prime}

Overlay Graph: Construction

for each node $u \in S$
\square perform a local search from u in G
\square determine the covering nodes
\square add an edge (u, v) to E^{\prime} for each covering node v

Covering Nodes

Conservative Approach:
\square stop searching in G when all branches are covered
can be very inefficient

Covering Nodes

Aggressive Approach:

\square do not continue the search in G on covered branches
can be very inefficient

Covering Nodes

Compromise:

\square introduce parameter p
\square do not continue the search in G on branches that already contain p nodes from S
\square in addition: stop when all branches are covered
$\square p=1 \rightarrow$ aggressive
$\square p=\infty \rightarrow$ conservativeworks very well in practice

Highway Hierarchies

\square previous static route-planning approach
\square determines a hierarchical representation of nodes and edges

2. Static Highway-Node Routing

Static Highway-Node Routing

extend ideas from- multi-level overlay graphs
[HolzerSchulzWagnerWeiheZaroliagis00-07]
- highway hierarchies
- transit node routing
[BastFunkeMatijevicSS06-07]
\square use highway hierarchies to classify nodes by 'importance'
i.e., select node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots \supseteq S_{L}$
(crucial distinction from previous separator-based approach)
\square construct multi-level overlay graph
$G_{0}=G=(V, E), G_{1}=\left(S_{1}, E_{1}\right), G_{2}=\left(S_{2}, E_{2}\right), \ldots, G_{L}=\left(S_{L}, E_{L}\right)$
(just iteratively construct overlay graphs)

Static Highway-Node Routing

extend ideas from- multi-level overlay graphs
[HolzerSchulzWagnerWeiheZaroliagis00-07]
- highway hierarchies
[SS05-06]
- transit node routing
[BastFunkeMatijevicSS06-07]
\square use highway hierarchies to classify nodes by 'importance' i.e., select node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots \supseteq S_{L}$
(crucial distinction from previous separator-based approach)
\square construct multi-level overlay graph 2 min
$G_{0}=G=(V, E), G_{1}=\left(S_{1}, E_{1}\right), G_{2}=\left(S_{2}, E_{2}\right), \ldots, G_{L}=\left(S_{L}, E_{L}\right)$
(just iteratively construct overlay graphs)
(experiments with a European road network with ≈ 18 million nodes)

Query: Aggressive Variant

\square node level $\ell(u):=\max \left\{\ell \mid u \in S_{\ell}\right\}$
\square forward search graph $\overrightarrow{\mathcal{G}}:=\left(V,\left\{(u, v) \mid(u, v) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right)$
\square backward search graph $\overleftarrow{G}:=\left(V,\left\{(u, v) \mid(v, u) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right)$
\square perform one plain Dijkstra search in $\overrightarrow{\mathcal{G}}$ and one in $\overleftarrow{\mathcal{G}}$

Proof of Correctness

Level 2

Level 1

shortest path from s to t in $G=G_{0}$

Proof of Correctness

Level 2

overlay graph G_{1} preserves distance from $s_{1} \in S_{1}$ to $t_{1} \in S_{1}$

Proof of Correctness

overlay graph G_{2} preserves distance from $s_{2} \in S_{2}$ to $t_{2} \in S_{2}$

Schultes/Sanders: Route Planning

Proof of Correctness

$$
\begin{aligned}
& \overrightarrow{\mathcal{G}}:=\left(V,\left\{(u, v) \mid(u, v) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right) \\
& \overleftarrow{\mathcal{G}}:=\left(V,\left\{(u, v) \mid(v, u) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right)
\end{aligned}
$$

Stall-on-Demand

\square a node v can 'wake' a node u if $\ell(u)>\ell(v)$$u$ can 'stall' v

$$
\text { (if } \boldsymbol{\delta}(u)+w(u, v)<\boldsymbol{\delta}(v))
$$

i.e., search is not continued from v
fast road

\square stalling can propagate to adjacent nodes
\square does not invalidate correctness (only suboptimal paths are stalled)

Memory Consumption / Query Time

different trade-offs between memory consumption and query time

for example:

$\square 9$ bytes per node overhead $\longrightarrow 0.88 \mathrm{~ms}$ store complete multi-level overlay graph
$\square 0.7$ bytes per node overhead $\rightarrow 1.44 \mathrm{~ms}$ store only forward and backward search graph $\overrightarrow{\mathcal{G}}$ and $\overleftarrow{\mathcal{G}}$
$(\overrightarrow{\mathcal{G}}$ and $\overleftarrow{\mathcal{G}}$ are independent of s and $t)$

3. Dynamic Highway-Node Routing

Dynamic Highway-Node Routing

change entire cost function

\square keep the node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
\square recompute the overlay graphs

speed profile	default	fast car	slow car	slow truck	distance
constr. [min]	$1: 40$	$1: 41$	$1: 39$	$1: 36$	$3: 56$
query [ms]	1.17	1.20	1.28	1.50	35.62
\#settled nodes	1414	1444	1507	1667	7057

Dynamic Highway-Node Routing

change a few edge weights

\square server scenario: if something changes,

- update the preprocessed data structures
- answer many subsequent queries very fast

mobile scenario: if something changes,
- it does not pay to update the data structures
- perform single 'prudent' query that takes changed situation into account

Dynamic Highway-Node Routing

change a few edge weights, server scenario

\square keep the node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
\square recompute only possibly affected parts of the overlay graphs

- the computation of the level- ℓ overlay graph consists of $\left|S_{\ell}\right|$ local searches to determine the respective covering nodes
- if the initial local search from $v \in S_{\ell}$ has not touched a now modified edge (u, x), that local search need not be repeated
- we manage sets $A_{u}^{\ell}=\left\{v \in S_{\ell} \mid v\right.$'s level- ℓ preprocessing might be affected when an edge (u, x) changes $\}$
change a few edge weights, server scenario

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

1. keep the node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
2. keep the overlay graphs
3. $C:=$ all changed edges
4. use the sets A_{u}^{ℓ} (considering edges in C) to determine for each node v a reliable level $r(v)$
5. during a query, at node v
\square do not use edges that have been created in some level $>r(v)$
\square instead, downgrade the search to level $r(v)$

Schultes/Sanders: Route Planning

Level 0 Level 1 Level 2
Level 3
Level 4
Level 5
Level 6
Level 7

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

iterative variant (provided that only edge weight increases allowed)

1. keep everything (as before)
2. $C:=\emptyset$
3. use the sets A_{u}^{ℓ} (considering edges in C) to determine for each node v a reliable level $r(v)$ (as before)
4. 'prudent' query (as before)
5. if shortest path P does not contain a changed edge, we are done
6. otherwise: add changed edges on P to C, repeat from 3 .

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

		single pass	iterative			
\|change set		affected	query time	query time	\#iterations	
(motorway edges)	queries	$[\mathrm{ms}]$	$[\mathrm{ms}]$	avg	max	
1	0.4%	2.3	1.5	1.0	2	
10	5.8%	8.5	1.7	1.1	3	
100	40.0%	47.1	3.6	1.4	5	
1000	83.7%	246.3	25.3	2.7	9	

4. Many-to-Many Extension

Many-to-Many Routing

[with S. Knopp, F. Schulz (PTV AG), D. Wagner]

Given:

\square graph $G=(V, E)$set of source nodes $S \subseteq V$set of target nodes $T \subseteq V$

Task: compute $|S| \times|T|$ distance table containing the shortest path distances

Simple Solutions

Example: 10000×10000 table in Western Europe
\square apply $\underbrace{\text { SSSP algorithm }}|S|$ times (e.g. DIJKSTRA)

$$
\approx 10000 \times 10 \mathrm{~s} \approx \text { one day }
$$apply P2P algorithm $|S| \times|T|$ times

$$
\approx 10000^{2} \times 1 \mathrm{~ms} \approx \text { one day }
$$

${ }^{1}$ requires about 15 minutes preprocessing time

Our Solution

Example: 10000×10000 table in Western Europe
\square many-to-many algorithm
based on highway-node routing ${ }^{1}$

${ }^{1}$ requires about 15 minutes preprocessing time

Main Idea

\square instead of $|S| \times|T|$ bidirectional highway-node queries
$\square \quad$ perform $|S|+|T|$ unidirectional highway-node queries

Algorithm

\square maintain an $|S| \times|T|$ table D of tentative distances
(initialize all entries to ∞)

\square for each $t \in T$, perform backward search up to the top level, store search space entries $(t, u, d(u, t))$
\square arrange search spaces: create a bucket for each u
\square for each $s \in S$, perform forward search up to and including the top level, at each node u, scan all entries $(t, u, d(u, t))$ and compute $d(s, u)+d(u, t)$, update $D[s, t]$

Schultes/Sanders: Route Planning

Asymmetry

for large distance tables, most time spent on bucket scanning
Solution: use less levels \rightsquigarrow strengthen the asymmetry
backward search spaces get smaller \rightsquigarrow less bucket entriesforward search spaces get bigger

Schultes/Sanders: Route Planning

Experiments

Summary

\square efficient static approach

- fast preprocessing / fast queries
- outstandingly low memory requirements 0.7 bytes $/$ node $\rightsquigarrow 1.4 \mathrm{~ms}$
\square can handle practically relevant dynamic scenarios
- change entire cost function
typically < 2 minutes
- change a few edge weights
* update data structures
$2-40 \mathrm{~ms}$ per changed edge OR
* iteratively bypass traffic jams e.g., 3.6 ms in case of 100 traffic jams
\square extensible to many-to-many 23 s for 10000×10000 table

Future Work

\square find simpler / better ways to determine the node sets

$$
S_{1} \supseteq S_{2} \supseteq S_{3} \ldots
$$

\square handle a massive amount of updates
\square deal with time-dependent scenarios
(where edge weights depend on the time of day)

\square allow multi-criteria optimisations

