

Route Planning in Road Networks

- simple, flexible, efficient -

Dominik Schultes Peter Sanders

Institut für Theoretische Informatik – Algorithmik II Universität Karlsruhe (TH)

http://algo2.iti.uka.de/schultes/hwy/

Bertinoro, October 1, 2007

Static Route Planning in Road Networks

Task: determine quickest route from source to target location

Problem: for large networks, simple algorithms are too slow

Assumption: road network does not change

Conclusion: use preprocessed data to accelerate source-target-queries (research focus during the last years [\rightarrow e.g., 9th DIMACS Challenge]) \rightsquigarrow correctness relies on the above assumption

Dynamic Scenarios

0 0

3

change entire cost function

(e.g., use different speed profile)

change a few edge weights

(e.g., due to a traffic jam)

Constancy of Structure

Weaker Assumption:

structure of road network does not change

(no new roads, road removal = set weight to ∞)

 \rightsquigarrow not a significant restriction

 classification of nodes by 'importance' might be slightly perturbed, but not completely changed

(e.g., a sports car and a truck both prefer motorways)

→ performance of our approach relies on that

(not the correctness)

Highway-Node Routing

1. basic concepts: overlay graphs, covering nodes

- 2. lightweight, efficient static approach
- 3. dynamic version
- 4. many-to-many extension

S

1. Basic Concepts

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]

- \Box graph G = (V, E) is given
 - select node subset $S \subseteq V$

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]

- \Box graph G = (V, E) is given
 - \Box select node subset $S \subseteq V$

 \Box overlay graph G' := (S, E')

determine edge set E' s.t. shortest path distances are preserved

Minimal Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]

- \Box graph G = (V, E) is given
 -] select node subset $S \subseteq V$

 \Box minimal overlay graph G' := (S, E') where

 $E' := \{(s,t) \in S \times S \mid \text{no inner node of the shortest } s \text{-}t \text{-path belongs to } S\}$

Covering Nodes

Definitions:

 \Box covered branch: contains a node from S

covered tree: all branches covered

 \Box covering nodes: on each branch, the node $u \in S$ closest to the root s

bidirectional

 \Box perform search in G till search trees are covered by nodes in S

bidirectional

 \Box perform search in G till search trees are covered by nodes in S

 \Box continue search only in G'

Overlay Graph: Construction

for each node $u \in S$

- \Box perform a local search from u in G
 - determine the covering nodes
- \Box add an edge (u, v) to E' for each covering node v

Covering Nodes

Conservative Approach:

 \Box stop searching in G when all branches are covered

can be very inefficient

Aggressive Approach:

 \Box do not continue the search in G on covered branches

Covering Nodes

Compromise:

- introduce parameter *p*
- do not continue the search in G on branches that already contain p nodes from S
- in addition: stop when all branches are covered
- $\square p = 1 \rightarrow \text{aggressive}$
- $\square p = \infty \rightarrow \text{conservative}$

works very well in practice

Highway Hierarchies

17

[SS05-06]

- previous static route-planning approach
- determines a hierarchical representation of nodes and edges

2. Static Highway-Node Routing

Static Highway-Node Routing

- extend ideas from
 - multi-level overlay graphs
 - highway hierarchies
 - transit node routing

[HolzerSchulzWagnerWeiheZaroliagis00-07]

[SS05-06]

[BastFunkeMatijevicSS06–07]

use highway hierarchies to classify nodes by 'importance'

i.e., select node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots \supseteq S_L$

(crucial distinction from previous separator-based approach)

construct multi-level overlay graph

 $G_0 = G = (V, E), G_1 = (S_1, E_1), G_2 = (S_2, E_2), \dots, G_L = (S_L, E_L)$

(just iteratively construct overlay graphs)

Static Highway-Node Routing

extend ideas from

- multi-level overlay graphs[HolzerSchulzWagnerWeiheZaroliagis00-07]- highway hierarchies[SS05-06]- transit node routing[BastFunkeMatijevicSS06-07]use highway hierarchies to classify nodes by 'importance'i.e., select node sets $S_1 \supseteq S_2 \supseteq S_3 \dots \supseteq S_L$ 13 min(crucial distinction from previous separator-based approach)

construct multi-level overlay graph 2 min $G_0 = G = (V, E), G_1 = (S_1, E_1), G_2 = (S_2, E_2), \dots, G_L = (S_L, E_L)$ (just iteratively construct overlay graphs)

(experiments with a European road network with pprox 18 million nodes)

Query: Aggressive Variant

 $\Box \text{ node level } \ell(u) := \max \left\{ \ell \mid u \in S_{\ell} \right\}$

□ forward search graph
$$\overrightarrow{\mathcal{G}} := \left(V, \left\{(u, v) \mid (u, v) \in \bigcup_{i=\ell(u)}^{L} E_i\right\}\right)$$

□ backward search graph $\overleftarrow{\mathcal{G}} := \left(V, \left\{(u, v) \mid (v, u) \in \bigcup_{i=\ell(u)}^{L} E_i\right\}\right)$

 \Box perform one plain Dijkstra search in $\overrightarrow{\mathcal{G}}$ and one in $\overleftarrow{\mathcal{G}}$

Proof of Correctness

Level 2

Level 1

shortest path from *s* to *t* in $G = G_0$

overlay graph G_1 preserves distance from $s_1 \in S_1$ to $t_1 \in S_1$

Proof of Correctness

overlay graph G_2 preserves distance from $s_2 \in S_2$ to $t_2 \in S_2$

Proof of Correctness

$$\overrightarrow{\mathcal{G}} := \left(V, \left\{ (u, v) \mid (u, v) \in \bigcup_{i=\ell(u)}^{L} E_i \right\} \right)$$

$$\overleftarrow{\mathcal{G}} := \left(V, \left\{ (u, v) \mid (v, u) \in \bigcup_{i=\ell(u)}^{L} E_i \right\} \right)$$

Stall-on-Demand

- \Box a node *v* can 'wake' a node *u* if $\ell(u) > \ell(v)$
 - $\exists u \operatorname{can} \operatorname{'stall'} v$

$$(\text{if } \delta(u) + w(u, v) < \delta(v))$$

i.e., search is not continued from $\boldsymbol{\nu}$

- stalling can propagate to adjacent nodes
- does not invalidate correctness (only suboptimal paths are stalled)

Memory Consumption / Query Time

different trade-offs between memory consumption and query time

for example:

□ 9 bytes per node overhead \rightarrow 0.88 ms

store complete multi-level overlay graph

] 0.7 bytes per node overhead \rightarrow 1.44 ms store only forward and backward search graph \overrightarrow{G} and \overleftarrow{G} $(\overrightarrow{G}$ and \overleftarrow{G} are independent of *s* and *t*)

numbers refer to the Western European road network with 18 million nodes

3. Dynamic Highway-Node Routing

Dynamic Highway-Node Routing

change entire cost function

 \Box keep the node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots$

recompute the overlay graphs

speed profile	default	fast car	slow car	slow truck	distance
constr. [min]	1:40	1:41	1:39	1:36	3:56
query [ms]	1.17	1.20	1.28	1.50	35.62
#settled nodes	1 414	1 4 4 4	1 507	1 667	7 057

change a few edge weights

- server scenario: if something changes,
 - update the preprocessed data structures
 - answer many subsequent queries very fast
- mobile scenario: if something changes,
 - it does not pay to update the data structures
 - perform single 'prudent' query that takes changed situation into account

change a few edge weights, server scenario

 \Box keep the node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots$

recompute only possibly affected parts of the overlay graphs

- the computation of the level- ℓ overlay graph consists of $|S_{\ell}|$ local searches to determine the respective covering nodes
- if the initial local search from $v \in S_{\ell}$ has not touched a now modified edge (u, x), that local search need not be repeated
- we manage sets $A_u^{\ell} = \{v \in S_{\ell} \mid v$'s level- ℓ preprocessing might be affected when an edge (u, x) changes $\}$

change a few edge weights, mobile scenario

- 1. keep the node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots$
- 2. keep the overlay graphs
- 3. C :=all changed edges
- 4. use the sets A_u^{ℓ} (considering edges in *C*) to determine for each node *v* a reliable level r(v)
- 5. during a query, at node v

 \Box do not use edges that have been created in some level > r(v)

 \Box instead, downgrade the search to level r(v)

change a few edge weights, mobile scenario

iterative variant (provided that only edge weight increases allowed)

- 1. keep everything (as before)
- 2. *C* := **∅**
- 3. use the sets A_u^{ℓ} (considering edges in *C*) to determine for each node *v* a reliable level r(v) (as before)
- 4. 'prudent' query (as before)
- 5. if shortest path P does not contain a changed edge, we are done
- 6. otherwise: add changed edges on P to C, repeat from 3.

change a few edge weights, mobile scenario

	_	single pass	iterative		
change set	affected	query time	query time	#iterations	
(motorway edges)	queries	[ms]	[ms]	avg	max
1	0.4 %	2.3	1.5	1.0	2
10	5.8%	8.5	1.7	1.1	3
100	40.0 %	47.1	3.6	1.4	5
1 000	83.7 %	246.3	25.3	2.7	9

4. Many-to-Many Extension

Many-to-Many Routing

[with S. Knopp, F. Schulz (PTV AG), D. Wagner]

Given:

- \Box graph G = (V, E)
 - \Box set of source nodes $S \subseteq V$
- \Box set of target nodes $T \subseteq V$

¹ requires about 15 minutes preprocessing time

Our Solution

Example: $10\,000 \times 10\,000$ table in Western Europe

many-to-many algorithm

based on highway-node routing¹

23 seconds

¹requires about 15 minutes preprocessing time

Main Idea

instead of $|S| \times |T|$ bidirectional highway-node queries

perform |S| + |T| unidirectional highway-node queries

Algorithm

maintain an $|S| \times |T|$ table D of tentative distances (initialize all entries to ∞)

□ for each $t \in T$, perform backward search up to the top level, store search space entries (t, u, d(u, t))

arrange search spaces: create a bucket for each *u*

for each $s \in S$, perform forward search up to and including the top level, at each node u, scan all entries (t, u, d(u, t)) and compute d(s, u) + d(u, t), update D[s, t]

Asymmetry

for large distance tables, most time spent on bucket scanning

Solution: use less levels \rightsquigarrow strengthen the asymmetry

☐ backward search spaces get smaller → less bucket entries

forward search spaces get bigger

Topmost Level

efficient static approach

- fast preprocessing / fast queries

 $15 \min / 0.9 \, \mathrm{ms}$

typically < 2 minutes

- outstandingly low memory requirements 0.7 bytes/node ~ 1.4 ms

can handle practically relevant dynamic scenarios

- change entire cost function
- change a few edge weights
 - * update data structures
 - OR
 - * iteratively bypass traffic jams e.g., 3.6 ms in case of 100 traffic jams

extensible to many-to-many 23 s for 10 000 × 10 000 table

2-40 ms per changed edge

numbers refer to the Western European road network with 18 million nodes

find simpler / better ways to determine the node sets

 $S_1 \supseteq S_2 \supseteq S_3 \dots$

(work in progress)

handle a massive amount of updates

deal with time-dependent scenarios
(where edge weights depend on the time of day)

allow multi-criteria optimisations

