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Abstract

Centrality indices are used to classify a graph in important and unimportant vertices.
A commonly used index is betweenness centrality which is based on shortest paths. For
large graphs it is almost impossible to calculate exact betweenness centrality in appro-
priate time. The best known algorithm today is based on solving n SSSPs and requires
O(nm+ n2 log(n)) time. But in most cases, e.g. on a home computer, resources are lim-
ited. Current approximation algorithms extrapolate values by solving only k ≪ n SSSPs.
Vertices near the source of a SSSP are often overestimated. We introduce improvements
which take the distance to the source into account. Euclidean distance between approxi-
mation and exact values is reduced by factor 4 with same runtime. Or runtime is 16 times
faster with same Euclidean distance in a standard example, the movie actor network.
Other real-world networks show similar promising results.
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1 Introduction

1.1 Motivation

Real-world networks have been a field of study and research for a long time. They are repre-
sented by a graph G = (V,E) of vertices V and edges E. Often they have additional properties,
e.g. weighted edges, undirected edges or parallel edges. A common example is the internet
router topology where routers are vertices and links between routers are edges. One would like
to know which routers or which links are important, e.g. how severe is the breakdown of a
specified router or link. So centrality measures are required to label each vertex or edge with a
number indicating its importance. But there is neither a mathematical definition for important
nor for severe. So since the 1950’s many centrality indices have evolved, each with specific
applications. Some examples for applications include the facility location problem, highway-
node routing, web page ranking or prediction of polls. A centrality index is a structural index
for vertices or edges. Often they are based on shortest paths. Some examples are closeness
centrality, stress centrality, graph centrality, reach centrality and betweenness centrality [4].
Our attention belongs to the general betweenness centrality and a derivate that we introduce
in this paper, canonical betweenness centrality. It can be applied to vertices or edges. Both
indices measure to what extend a vertex or edge is ‘in between groups of vertices’.

1.2 Definition

Let G = (V,E) be a graph, where V is a set of vertices and E is a multiset of edges. Let
ω : E → IR>0 be a weight function for this graph with positive weights. Let dG(s, t) be the
shortest path distance between s, t ∈ V . Denote SPst the set of different shortest path between
s, t ∈ V and σst := |SPst|. For v ∈ V denote SPst(v) the set of different shortest path containing
v with s 6= v 6= t, and σst(v) := |SPst(v)|.

General Betweenness Centrality

General betweenness centrality [9], [1] for a vertex v ∈ V adds up fractions of shortest paths.

cB(v) :=
∑

s,t∈V

σst(v)

σst
(1)

Canonical Betweenness Centrality

Canonical betweenness centrality is a derivate of betweenness centrality. It considers only one
shortest path between every s, t ∈ V . Define a set P of canonical paths, that is a set P that
meets the following three conditions:

P ⊆
⋃

s,t∈V

SPst (2)

∀s, t ∈ V : |P ∩ SPst| ∈ {0, 1} (3)

∀s, t ∈ V : (|P ∩ SPst| = 0⇔ |SPst| = σst = 0) (4)

For s, t, v ∈ V denote

σ∗st(v) :=

{

0 if P ∩ SPst(v) = ∅
1 if P ∩ SPst(v) 6= ∅ (5)
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cC(v) :=
∑

s,t∈V

σ∗st(v) (6)

The idea behind canonical betweenness centrality is routing. Even if there is more than a
single path between two endpoints s and t, the routing software usually finds only one. Some
advanced routing algorithms like highway-node routing [16] calculate shortest-path overlay
graphs in advance to speed up the actual routing algorithm. These overlay graphs consist of
a subset of vertices of G and only those edges that are necessary for shortest paths between
them. As soon as a search for a route between s and t reaches a vertex in the overlay graph
only vertices and edges in the overlay graph are considered. Therefore the chosen subset of
vertices is crucial to time requirements of the search. Canonical betweenness centrality can be
used to select this subset.

Other important indices

Some other important indices based on shortest paths are listed below, but those indices are
currently of no interest for us.

cO(v) = 1
∑

t∈V
dG(v,t)

Closeness centrality [15]

cG(v) = 1
maxt∈V dG(v,t)

Graph centrality [11]

cS(v) =
∑

s 6=v 6=t∈V
σst(v) Stress centrality [17]

cR(v) = maxs,t∈V,σst(v)>0 min(dG(s, v), dG(v, t)) Reach centrality [10]

1.3 Related work

The fastest algorithm up to date to calculate exact general betweenness centrality is Brandes’
exact algorithm [3]. It requires O(nm+n2 log(n)) time for a weighted graph where n = |V |,m =
|E|. It solves n SSSP (Single Source Shortest Path) problems with Dĳkstra’s algorithm. Then
it adds counter values from leaves to the top. For large graphs, e.g. a street graph of Western
Europe with approximately 18 million vertices and 22 million edges, exact calculation is almost
unfeasible with only a small amount of time and computing power. Brandes and Pich [5]
introduced a unbiased technique to approximate general betweenness by choosing only k ≪ n
pivots as source for the SSSP algorithm. They turned their attention especially to the pivot
selection method. As their results show no significant advantage of specialized methods over
random pivot selection no other selection method was used by us. Another advantage of random
selection is its performance.
Bader and Madduri [2] introduced parallel algorithms to calculate exact general betweenness
centrality. Their algorithms can reduce execution time by some multipliers but need many
CPU cores and much RAM. This is useful if exact general betweenness centrality values are
necessary and resources are available. But if good estimations are sufficient or resources are
too expensive, approximation algorithms should be preferred.

1.4 Our contribution

Brandes’ method randomly chooses k ≪ n vertices as sources to solve the SSSP. These vertices
are called pivots. The centrality of vertices near those pivots is often overestimated. To alleviate
this problem we use the distance between a vertex and the pivot in our approximation methods.
We introduce two different approaches to take the distance into account. Test results for
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different graph types and sizes show advantages of our new algorithms, they always perform
better within the same time frame. We will prove that our estimators are unbiased and have
comparable analytical error bounds as Brandes’ method. Then we map our algorithms to
general betweenness centrality and show similar results.

1.5 Outline

First, approximation of canonical betweenness centrality is described in Section 2. We present
our new methods (2.1), show how to implement them efficiently (2.2), introduce our test in-
stances and compare it with Brandes’ method (2.3). In Section 3 our methods are adapted to
general betweenness centrality. A slightly new definition of the methods (3.1) and implemen-
tation of algorithms (3.2) is necessary. We use another test instance but show similar results
regarding Brandes’ method (3.3).
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2 Approximation of Canonical Betweenness Centrality

First we will create an abstract approximation framework. All approximation methods within
this framework will be unbiased. We show how to integrate Brandes’ method in this framework
and introduce our new variants, bisection method and linear scaling. After that, efficient
implementations of all three methods are proposed and experimental results are shown.

Figure 1: A part of the road network of Spain, 16 pivots compared to 8192 pivots with the
bisection method, the blue diamond is a backward pivot, cyan dots are underestimated by

more than factor 10−8, red dots are overestimated, the darker the red the lower is the
overestimation.

2.1 Methods

Brandes does not take distance between pivot s and vertex v into account, as illustrated in
Figure 1. Vertices near a pivot are often overestimated.

Our framework will depend on a distance function d : V × V → IR≥0 satisfying

∀v, s, t ∈ V : (σ∗st(v) = 1⇒ d(s, t) = d(s, v) + d(v, t)) (7)

For example the shortest path distance dG is valid. Let fℓ : [0, ℓ]→ IR be a function to weight
the contribution of a forward pivot according to the distance ℓ. To get an unbiased estimator,
the contribution of a backward pivot is weighted with

f̄ℓ := x 7→ 1− fℓ(x). (8)

This introduces the possibility to count contributions depending on the distance between v and
s or t. Following Brandes’ approach in [3], we define for s, t, v ∈ V the contribution δ∗s•(v) of a
forward pivot s ∈ V to the canonical betweenness centrality value of v is and the contribution
δ∗•t(v) of a backward pivot t ∈ V .

δ∗s•(v) :=
∑

t∈V

(

σ∗st(v) · fd(s,t)(d(s, v))
)

(9)

δ∗•t(v) :=
∑

s∈V

(

σ∗st(v) · f̄d(s,t)(d(v, t))
)

(10)
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To extrapolate an unbiased estimator, we define a random variable X with uniform distribution
among all 2n events (n forward pivots and n backward).

X =

{

2n · δ∗s•(v) if forward pivot s is chosen
2n · δ∗•t(v) if backward pivot t is chosen

(11)

Lemma 1 X is an unbiased estimator meaning ∀v ∈ V : E(X) = cC(v) for all methods
constructed satisfying conditions listed above.

Proof.

E(X)
(11)
=

1

2n
·
(

∑

s∈V

(2n · δ∗s•(v)) +
∑

t∈V

(2n · δ∗•t(v))
)

(9),(10)
=

∑

s∈V

∑

t∈V

(

σ∗st(v) · fd(st)(d(s, v))
)

+
∑

t∈V

∑

s∈V

(

σ∗st(v) · f̄d(s,t)(d(v, t))
)

=
∑

s,t∈V

σ∗st(v)
(

fd(s,t)(d(s, v)) + f̄d(s,t)(d(v, t))
)

(7),(8)
=

n
∑

s,t∈V

σ∗st(v)

(6)
= cC(v)

�

Brandes’ Method

Brandes’ method does not depend on the distance between v and s or t; so fℓ and f̄ℓ are
constant. There is no necessity to define a d function.

fℓ := x 7→ 1

2
(12)

f̄ℓ := x 7→ 1

2
(13)

We observe that Brandes did not use backward pivots. But to keep all methods comparable
we chose to add them.

Now we introduce two different methods that take shortest path distance between v and s or t
into account to achieve better results.

Linear Scaling

Often vertices near a selected pivot p are overestimated as Figure 1 illustrates. Linear approx-
imation will soften this phenomenon. The nearer v to s on forward search or to t on backward
search the lower a contribution counts.

fℓ := x 7→ x
ℓ

(14)

f̄ℓ = x 7→ 1− x
ℓ

(15)

The d function is the shortest path distance dG between two vertices. Conditions (7), (8) are
satisfied.
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Bisection Method

The bisection method has the same goal as linear scaling but does not use a linear approach.
Only contributions to cC(v) are taken into account if v is at least half distance between s and
t away from s on forward search or more than half distance away from t on backward search.
The d function is the unit distance. Usually unit distance between two vertices depends on the
chosen path. We use the canonical shortest path, if existent, to measure unit distance. This
approach satisfies conditions (7), (8).

fℓ := x 7→
{

1 if x ≥ ℓ
2

0 if x < ℓ
2

(16)

f̄ℓ = x 7→
{

1 if x > ℓ
2

0 if x ≤ ℓ
2

(17)

In Figure 2 all three methods are compared by their definition of fℓ.
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Figure 2: Comparison of function f1

Other methods

Within our framework other methods could be defined, too. For example the sigmoid function
that is used in neural networks, could be a good idea. Or use bisection method with shortest
path distance. But it is difficult or impossible to implement them efficiently, i.e. in O(SSSP).

Error bounds

Error bounds of Brandes [5] can be adopted. Hoeffding [13] proves that for independent iden-
tically distributed random variables X1, . . . , Xk with 0 ≤ Xi ≤M and arbitrary ξ ≥ 0,

prob
(∣

∣

∣

∣

X1 + . . .+Xk
k

− E
(

X1 + . . .+Xk
k

)∣

∣

∣

∣

≥ ξ
)

≤ 2e−2k( ξM )
2

(18)

Let Xi represent contribution to cC(v) for pivot number i. Because pivots are chosen indepen-
dently, random variables X1, . . . , Xk are independent and uniformly distributed. Each vertex
is on at most (n− 2) shortest paths because source and target of a shortest path do not count.
Extrapolation yields factor 2n. A factor α is needed to take the behavior of fℓ and f̄ℓ into
account.

α := max
x∈[0,ℓ]

(fℓ(x), f̄ℓ(x))

Applying Hoeffdings bound with
M := 2n(n− 2) · α (19)
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ξ := ǫ · 2(n− 2) · α (20)

yields an error bound from above by ξ with probability 2e−2k( ǫn)
2

. For Brandes’ method α = 1
2
,

for our new methods α = 1. Our methods estimate contributions depending on the distance to
the pivot. This leads to an higher upper bound M . Thus, with Hoeffdings inequality we can
only prove a weaker error bound than for Brandes’ method but we will show that our methods
are better in practice.

2.2 Algorithms

Our new algorithms are based on Brandes’ algorithm [5]. We will shortly introduce Brandes’
algorithm and then focus on the changes made to implement the bisection method and linear
scaling.

Brandes’ Algorithm

All algorithms have in common that they need to solve the SSSP problem resulting in a shortest
path tree with root s on forward search (or root t on backward search). For unweighted graphs
this is possible with breath first search (BFS), for weighted graphs Dĳkstra’s algorithm is used.
For backward search the opposite graph Gop is used, having the same vertices but all edges have
switched source and target. To get an efficient implementation, Brandes proved a recursion
equation to calculate contribution δ∗s•(v) out of contribution of its children in the shortest path
tree. Let Cs(v) be the multiset of children of v ∈ V in the shortest path tree. Then,

δ∗s•(v) =
∑

w∈Cs(v)

(1 + δ∗s•(w)) (21)

If w is a child of v, then v lies on all shortest paths that w lies on plus the one between s and
w. Same thing for other children x of v as Figure 3 illustrates.

s v

w δ∗s•(w)

x δ∗s•(x)

Figure 3: Visualization of Brandes’ method

The recursion equation is also valid for backward search because the proof can be applied to
the opposite graph Gop as well.

In Algorithm 1 Line 11, the recursion equation is used. Let cSSSP denotes the CanonicalSSSP
algorithm of Line 5. Algorithm Canonical-Brandes requires O(cSSSP ) +O(n) time per pivot.
O(cSSSP ) is not the same as O(SSSP ), we will elaborate this later in this section.
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Linear Scaling Algorithm

Linear scaling only needs small modifications to Brandes’ algorithm. Because it uses shortest
path distance to weight contributions, this distance needs to be stored in the shortest path tree.

Why does Algorithm 2 implement linear scaling? We will show this for the forward direction,
the backward direction is similar. Identify clocal[v] with δ

∗
s•(v)
d(s,v)

. Brandes’ recursion equation (21)

needs to be modified to add up fractions 1
d(s,t)

instead of 1.

δ∗s•(v)
(9),(14)

=
∑

t∈V

(

σ∗st(v) · d(s,v)d(s,t)

)

= d(s, v) · ∑
t∈V

σ∗st(v)

d(s,t)

⇒ ∑

w∈Cs(v)

1+δ∗s•(w)
d(s,w)

=
∑

w∈Cs(v)

(

1
d(s,w)

+
∑

t∈V

σ∗st(w)

d(s,t)

)

(∗)
=

∑

t∈V

σ∗st(v)

d(s,t)
= δ∗s•(v)
d(s,v)

(∗): same argument as illustrated in Figure 3.

So clocal[v] =
∑

w∈Cs(v)

(

clocal[w] + 1
d(s,w)

)

in Line 11 and δ∗s•(w) = clocal[w] · d(s, w) in Line 9.

Canonical-Linear-Scaling requires O(cSSSP ) +O(n) time per pivot like Canonical-Brandes.

Bisection Algorithm

The bisection algorithm processes the shortest path tree in a depth first search (DFS) manner
so it can maintain a path from s to w on a stack S. Random access to this stack allows
calculation of the middle in O(1). For a DFS, children are needed in the shortest path tree to
traverse the tree from the root to the leafs. Usually Dĳkstra’s algorithm only stores parents in
the shortest path tree so a modification to Dĳkstra’s algorithm is necessary.

Except for Lines 9-14, Algorithm 3 implements Brandes’ method. But instead of processing
vertices in nondecreasing distance to s, the shortest path tree is traversed depth first and
counters are incremented on the way back, when a pop occurs. The DFS is only used to adapt
the means to the end. The ‘bisection trick’ happens in Line 14. Subtracting 1 from the counter
in the middle will recursively neutralize +1 of Line 24 or 31. So ∀t ∈ V : σ∗st(v) will not
contribute to cC(v) if d(s, v) <= m satisfying the definition of the bisection method.

Canonical-Bisection requires O(cSSSP )+O(n) time per pivot. The data structure to store the
search tree is a vertex-array storing first child and next sibling, illustrated in Figure 4. Because
each vertex v ∈ V occurs in the shortest path tree at most once and either as first child or
as next sibling, Lines 16 and 32 are executed at most n times. So lines 21 and 28 will be
executed at most n times. The while loop starting at line 8 will be executed at most n times
because either there is a first child, another vertex has a next sibling or S is empty and the
loop terminates. The inner while loop starting at line 18 always executes a pop. So except for
Line 5, the algorithm is in O(n).
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Algorithm 1: Canonical-Brandes

Input: Graph G = (V,E) with n = |V |, number of pivots k
Output: Vertex-array c of estimated canonical betweenness centrality values for each v ∈ V
foreach v ∈ V do1

c[v]← 0;2

for i = 1 to k do3

Choose s ∈ V and search direction uniformly at random;4

Solve CanonicalSSSP(s,direction);5

foreach v ∈ V do6

clocal[v]← 0;7

forall w ∈ V reachable from s, w 6= s in order of non-increasing distance to s do8

c[w] = c[w] + clocal[w];9

v ← parent of w;10

clocal[v]← clocal[v] + clocal[w] + 1 ; // applying recursion equation (21)11

// extrapolate

foreach v ∈ V do12

c[v]← c[v] · 2n
k

13

return c14

Algorithm 2: Canonical-Linear-Scaling

Input: Graph G = (V,E) with n = |V |, number of pivots k
Output: Vertex-array c of estimated canonical betweenness centrality values for each v ∈ V
foreach v ∈ V do1

c[v]← 0;2

for i = 1 to k do3

Choose s ∈ V and search direction uniformly at random;4

Solve CanonicalSSSP(s,direction);5

foreach v ∈ V do6

clocal[v]← 0;7

forall w ∈ V reachable from s, w 6= s in order of non-increasing distance do8

c[w] = c[w] + clocal[w] · d(s, w);9

v ← parent of w;10

clocal[v]← clocal[v] + clocal[w] + 1
d(s,w)

; // applying modified recursion equation11

// extrapolate

foreach v ∈ V do12

c[v]← c[v] · 2n
k

13

return c14
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Algorithm 3: Canonical-Bisection

Input: Graph G = (V,E) with n = |V |, number of pivots k
Output: Vertex-array c of estimated canonical betweenness centrality values for each v ∈ V
foreach v ∈ V do1

c[v]← 02

for i = 1 to k do3

Choose s ∈ V and search direction uniformly at random;4

Solve CanonicalSSSPWithChildren(s,direction);5

S ← ∅; // stack with random access, containing path to s, items (v,clocal[v])6

push(S,(s, 0));7

while S 6= ∅ do8

// count for vertex in the middle only on forward search

if forward search then9

// m is the index of the first vertex v with fd(s,back(S))(d(s, v)) = 0

if size(S)= 1 then m← 0 else m←
⌊

size(S)−2
2

⌋

;10

else// on backward search f̄ℓ is decisive11

m←
⌊

size(S)−1
2

⌋

;12

(v, a)← S[m];13

S[m]← (v, a− 1); // ‘bisection trick’14

if back(S) has first child v in the shortest path tree then15

push(S,(v, 0));16

else17

// remove vertices from stack with no next sibling and increment

counters

while S 6= ∅ and back(S) has no next sibling v in the shortest path tree do18

(v, a)←back(S);19

c[v]← c[v] + a;20

pop(S);21

if S 6= ∅ then22

(w, b)←back(S);23

back(S)← (w, b+ a+ 1); // applying recursion equation (21)24

// Remove vertex with sibling as well, but push sibling on stack

if S 6= ∅ then25

(v, a)←back(S);26

c[v]← c[v] + a;27

pop(S);28

if S 6= ∅ then29

(w, b)←back(S);30

back(S)← (w, b+ a+ 1); // applying recursion equation (21)31

push(S,(next sibling of v, 0))32

foreach v ∈ V do33

c[v]← c[v] · 2n
k

; // extrapolate34

return c35
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first child

next sibling next sibling

Figure 4: First child and next sibling in shortest path tree

Using shortest path distance instead of unit distance seems more suggesting. But this will likely
not be in O(n). We give an example in Figure 5; middle vertex for bi is a1 and for ci is ar.
As the DFS search proceeds from bi to ci it needs to relocate the middle from a1 to ar. Doing
this step by step from a1 to a2, . . . to ar requires Ω(r) steps, thus the total execution time is
in Ω(r2) = Ω(n2). This is not a proof that the bisection method with shortest path distance

a0 a1
r

a2
1

a3
1

ar

b1
1

c1
2r

b2
1

c2
2r

...

br
1

cr
2r

Figure 5: Example for bisection method with shortest path distance

is impossible in O(n), but it shows that walking from one vertex to the next one to locate the
middle vertex is not in O(n).

Canonical paths

So far we implicitly assumed that a graph G has unique shortest paths. To allow estimation
of canonical betweenness centrality on any graph a selection method is needed to select unique
shortest paths. This is done by forming a tree out of the acyclic shortest path graph with root
s ∈ V . Each vertex is represented by an index. If there is a vertex in the shortest path graph
that can have more than one parent on its shortest path to s, the parent with the lowest index
value is chosen. This approach is efficient if there is only forward search.

0

1

2 3

4

5
s t

Figure 6: Example for canonical paths on backward search.
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To find same unique shortest paths on backward search modifications are necessary. These
are motivated by Figure 6; the presented graph has unit distance. Forward search starting
at vertex s will find the blue path. As Dĳkstra search reaches vertex 5, two shortest path
with distance 3 are possible, either 0 − 2 − 3 − 5 or 0 − 1 − 4 − 5. Because 3 is lower than 4
the blue path is chosen. Backward search will find the red path. To get correct results, both
searches need to find the same path. Our solution is not efficient in theory, but works well in
practice. We use the mentioned simple approach on forward search and locate the same path
on backward search. Thus if backward search reaches vertex 0 and observes that there are two
possible shortest path, either 5− 3− 2− 0 or 5− 4− 1− 0, it needs to traverse back to the next
vertex both paths have in common to decide which path to choose; in this case it is vertex 5.

ar a2 a1 b1 b2 br

c0

c1

c2

cr

t

1

1

1

1

1

2

1

2

r r

Figure 7: Second example for canonical paths on backward search.

Figure 7 is an example that this is not in O(SSSP ). This graph has n = 3r+ 1 vertices, edges
are labeled with their weight. Starting backward search at vertex t the first vertex with more
than one shortest path is b1. It needs to traverse back four edges to reach vertex a1. For b2 six
edges need to be traversed back. For br, 2 + 2r edges need to traversed back. In total this adds
up to 2r + r(r + 1) ∈ Ω(n2) edges. So canonical betweenness centrality should only be used if
there are only few shortest paths between two vertices and if two shortest paths of same source
and target differ only on short parts. Street graphs are a good example for such graphs and our
tests show insignificant differences between duration of Dĳkstra’s algorithm and our modified
version. For example, the street graph of Belgium, our main test instance, has for each pair at
most 16 different shortest paths but most paths are canonical.

2.3 Experiments

Environment and Instances

The experiments were done on one core of a single AMD Opteron Processor 270 clocked at
2.0 GHz with 8 GB main memory and 2 × 1 MB L2 cache, running SuSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler 4.0.2 using optimization level
3.

All test results for canonical betweenness centrality are calculated with a directed road network
of Belgium with n = 463 514 and m = 596 119. Some visualizations originate from a road
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algorithm seconds/pivot
Brandes 0.502
bisection (unit) 0.539
bisection (shortest path) 0.561
linear scaling 0.508

Table 1: Runtime of different algorithms that approximate canonical betweenness centrality

network of Western Europe with n = 18 029 721 and m = 22 413 128. Both networks have been
made available for scientific use by the company PTV AG. The original graphs contain for each
edge a length and a road category. We assign average speed to each road category, compute
average travel times, and use them as weight.

The algorithms described in Section 2.2 were implemented using custom data structures for
graphs, same as in [16]. Basically an adiacency array is used.

Number of pivots refers to number of pivots that Brandes’ algorithm used. All other algorithms
get at most as much time as Brandes’ algorithm to calculate their results. So faster algorithms
like Brandes’ are not handicapped by more sophisticated but slower algorithms. We want to
test our algorithms by using all n vertices as pivots. This is a good test for correctness. So we
do not randomly choose search direction and do not put back pivots after they were chosen,
i.e. a chosen pivot cannot be chosen again. Also the number of pivots specifies the number
of forward and of backward pivots, e.g. 1024 pivots indicate 1024 forward pivots and 1024
backward pivots. So with n pivots the exact canonical betweenness centrality is calculated
because every vertex was once forward pivot and once backward pivot and all estimators are
unbiased.

We start our analysis by comparing runtimes of the algorithms in Table 1. They are quite
similar, but the bisection algorithm, especially with shortest path distance, is a little bit slower.

In Figures 8 and 9 methods are compared for different number of pivots. The first two global
scores directly compare estimated values to exact values. The Euclidean distance is between
capproxC and cexactC viewed as normalized vectors in IRn, same as [5].

√

√

√

√

√

√

∑

v∈V







capproxC (v)
∑

v∈V
capproxC (v)

− cexactC (v)
∑

v∈V
cexactC (v)







2

The geometric mean of relative error takes only vertices v with capproxC (v) 6= 0 into account, to
avoid division by zero. The number of vertices v with capproxC (v) = 0 is given separately.

V ′ := {v ∈ V | capproxC (v) 6= 0}

|V ′|

√

√

√

√

∏

v∈V ′
max

(

capproxC (v)

cexactC (v)
,
cexactC (v)

capproxC (v)

)

Both global scores measure the quality of the approximations. But compared to the Euclidean
distance, the geometric mean of relative error stronger regards the variance of the values.

The Euclidean distance and the geometric mean of relative error show good results for all
methods. Lower values are better, meaning smaller errors. Errors decrease with growing
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number of pivots. The bisection method and linear scaling are constantly better compared to
Brandes’ method. For example the bisection method compared to Brandes’ method improves
the Euclidean distance by factor 1.7− 2.7. Or the bisection algorithm is ≈ 6 times faster than
Brandes’ algorithm.

Centrality indices are often used to classify vertices or to establish an order among them. We
assigned a rank rC(v) between 1 and n to each vertex v, the higher the rank the smaller the
canonical betweenness centrality value. The other two global scores compare the estimated
rank to the exact rank. The inversion number counts the number of pairs of vertices that are
in wrong order.

∣

∣

∣

{

{v, w} | rexactC (v) > rexactC (w) and rapproxC (v) < rapproxC (w)
}∣

∣

∣

The geometric mean of relative rank error shows similar behavior as the inversion number.

n

√

√

√

√

∏

v∈V

max

(

rapproxC (v)

rexactC (v)
,
rexactC (v)

rapproxC (v)

)

Again, our new methods show better results than Brandes’ method. The score values of Bran-
des’ method increase with increasing number of pivots. But because ranks are compared instead
of estimated values, increasing errors are no error in the implementation of our algorithms. With
increasing number of pivots both scores eventually decrease as Figure 10 proves. The local max-
imum in both scores is rather a property of the used road network. In Figure 11 the inversion
number and the geometric mean of relative rank error are shown for a random graph without
the anomalies observed for the Belgian road network. The graph is generated like the random
graph Brandes [5] used. It is unweighted, undirected, has 1 000 vertices and 10 074 edges. Each

of the
(

n

2

)

edges was chosen independently with probability 10 000

(n
2
)

. The bisection method and

linear scaling show strictly decreasing inversion number and geometric mean of relative rank
error with the bisection method ahead.

In Figure 12 vertices are classified in levels to get a better overview. Level 11 contains the
vertices with rank 1-128, level 10 the next 256 vertices having rank 129-384, descending in an
logarithmic manner. The relative error

capproxC (v)

cexactC (v)

suggests that bisection method is even better than linear scaling. Note that because of the
logarithmic scale, value 0 cannot be displayed. Therefore values < 0.001 are displayed as 0.001.

We chose this value because maximum relative error maxv∈V (
c
approx

C
(v)

cexact
C

(v)
) is at ≈ 1000 in our

experiments.

Errors for important vertices are small and the advantage of the bisection method and linear
scaling compared to Brandes’ method is small. But for unimportant vertices especially the
bisection method is much better than other methods despite the fact that it uses fewer pivots
because it needs more time to calculate contributions for one pivot. For linear scaling the
advantage over Brandes’ method is smaller. Plots of relative error distinguished by more levels
can be found in the appendix section 5.
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Figure 8: Global scores for canonical betweenness centrality estimation
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Figure 9: Global scores for canonical betweenness centrality estimation
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Figure 10: Global scores for canonical betweenness centrality estimation, Brandes’ method
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Figure 11: Global scores for canonical betweenness centrality estimation, random graph,
unweighted, undirected, 1 000 vertices, 10 074 edges

Ranks can be used for example to construct overlay graphs for highway-node routing. In Figure
13 rank errors

rapprox(v)

rexact(v)

are compared.

Looking at the most important vertices, grouped in levels 10 and 11, Brandes’ method can
compete with linear scaling and it looks even better than bisection method with unit distance,
at least for 32 pivots. But with 128 pivots bisection method is the best method. The large
error of bisection method with 32 pivots can be explained with the ranking system. Because
ranks of important vertices are small, even a small rank error can result in a large relative rank
error. Note that upper and lower quartiles for bisection method are better than for Brandes’
method.

The first major result of this thesis is that linear scaling and especially the bisection method
are better than Brandes’ method. We presented our results solely for the Belgium graph but
we tested other real-world networks and observed similar results.

The bisection method with unit distance and with shortest path distance show similar results.
Even though the bisection method with shortest path distance needs more time per pivot and
thus having fewer pivots calculated than the bisection method with unit distance, it has smaller
rank errors.

In Figure 12 you note that the median of the Brandes’ method is at 0.5 and for the bisection
method and linear scaling it is at 1. This phenomenon is not a result of an error in our
implementation of Brandes’ algorithm. The mean value is still at 1 and this phenomenon
alleviates as the number of pivots grows, see Figure 14. For level 0 this phenomenon is not that
distinct because there are many vertices v with cC(v) = 0 which are always estimated correctly.

Notable are also large outliers especially in low levels. This is mainly a result of high variance
of contributions of different pivots. In Figure 15 the frequency of different contributions for an
exemplary outlier is plotted. Brandes’ method has some huge contributions leading to large
errors whereas linear scaling reduces this contributions and the bisection method has almost
no variance.

20



10
−

3
10

−
2

10
−

1
10

0
10

1
10

2
10

3

10
−

3
10

−
2

10
−

1
10

0
10

1
10

2
10

3

0 1 2 3 4 5 6 7 8 9 10 11

level

re
la

tiv
e 

er
ro

r

Brandes
bisection (unit)
bisection (sh.path)
linear

0.1%
1%

10%
25%
50%
75%
90%
99%

99.9%

least important vertices most important vertices

10
−

3
10

−
2

10
−

1
10

0
10

1
10

2
10

3

10
−

3
10

−
2

10
−

1
10

0
10

1
10

2
10

3

0 1 2 3 4 5 6 7 8 9 10 11

level

re
la

tiv
e 

er
ro

r

least important vertices most important vertices

Figure 12: Relative error for canonical betweenness centrality estimation, classified by level,
32 pivots above, 128 below, boxes represent 0.1%, 1%, 10%, 25%, 50%, 75%, 90%, 99%, 99.9%

quantiles, blue cross is mean value, circles are outliers
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Figure 15: Variance of contributions of an outlier vertex. Horizontal are all possible
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.

Problems of Linear Scaling

The linear approach is easy to implement, quite fast and shows better results than Brandes’
method. But in large graphs, vertices with small canonical betweenness centrality value are
estimated worse than with the bisection method. The reason is that vertices near a pivot receive
high contributions to their counter value and linear reduction softens this phenomenon only a
little bit. Let us start with a thought experiment. Think of a uniform grid like in Figure 16, a
very simple model of a street graph. Most shortest paths from the upper quarter, bounded by
the two blue lines, will go through vertex v. Draw a square with edge length r around s. Each

vertex on the edges of the square has Θ(r) distance to s, there are ≈ r2−(r−1)2

4
= 2r−1

4
vertices on

the upper edge of the square. Each of these vertices contributes Θ(1
r
) to the estimated counter

value capproxC (v). This is about Θ(1) for all vertices on the quarter circle and for a graph with
edge length R, Θ(R) in total. Hence the contribution of pivot s to the canonical betweenness
centrality value cC(v) of a pivot v close to s partially depends on R. In large graphs it is likely
that cC(v) is overestimated.
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s
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Figure 16: Example for linear scaling with capproxC (v) ∈ Ω(edge length) for each vertex v

This is a partial explanation for the worse performance compared to the bisection method.
This tree-effect can be observed in real-world networks, too. Figure 17 shows a part of Spain.
Calculation of 16 pivots forward and backward are compared to our best values of Western
Europe, an approximation with 8192 pivots using the bisection method. We did not use exact
value because calculation would take ≈ 12 years. Using the bisection method may favor the
results for the bisection method, but only a little because of the huge difference between 16 and
8192 pivots. The blue diamond is a backward pivot, cyan dots are underestimated by more
than factor 10−8, red dots are overestimated, the darker the red the lower is the overestimation.
Brandes’ method has many bright red dots near the pivot whereas linear scaling has darker dots
with smaller error. But the dots get a little brighter as they reach the pivot. That phenomenon
corresponds to the one described in Figure 16.
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Brandes’ method

linear scaling

bisection method

Figure 17: Tree-effect. A part of the road network of Spain, 16 pivots compared to 8192
pivots with the bisection method, the blue diamond is a backward pivot, cyan dots are

underestimated by more than factor 10−8, red dots are overestimated, the darker the red the
lower is the overestimation.
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Problems of the Bisection Method

Although the bisection method seems to be the best choice to estimate canonical betweenness
centrality there are still many outliers especially in low levels, these are the cyan dots in Figure
17. Affected are mostly vertices v with small canonical betweenness centrality value cC(v) and
only few contributors, pivots s with δs•(v) > 0. Three exemplary vertices are shown in Figure
18. It is highly likely that none of the chosen pivots is a contributor and such a vertex gets
canonical betweenness centrality value zero. On the other hand, it can happen that a single
contributor is among a small number k of pivots. Through extrapolation with k ≪ n, the
estimated canonical betweenness centrality value is too large.
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Figure 18: Variance of contributions of three outlier vertices. Horizontal are all possible
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3 Approximation of General Betweenness Centrality

General betweenness centrality can be seen as the multipath variant of canonical betweenness
centrality because it respects all shortest paths between pairs of vertices. We will adopt the
framework of canonical betweenness centrality but need to modify it to work with multiple
shortest paths. Brandes’ method and linear scaling fit in well but the bisection method needs
to be adapted to obtain an efficient implementation.

3.1 Methods

Because multiple shortest paths between two vertices s, t ∈ V can occur, unit distance does not
only depend on s and t but also on the shortest path currently processed. So a modification
of the d function of Section 2.1 is necessary. Let P ∈ SPst be a shortest path between s, t ∈ V
represented by its vertices and a strict order ≺P with s ≺P t indicating the sequence of vertices
on the shortest path. Let dP : P × P → IR≥0 be a function that satisfies

∀u, v, w ∈ P : s �P u ≺P v ≺P w �P t⇒ dP (u,w) = dP (u, v) + dP (v, w) (22)

With this definition unit distance can be used. Definitions fℓ, f̄ℓ can be adopted from Section 2.1
but we introduce a different notation for improved readability. We need to weight contribution
depending on ℓ = dP (s, t).

fs,t,P := fdP (s,t) (23)

f̄s,t,P := f̄dP (s,t) (24)

To adapt contributions for forward and backward pivots to the new dP function, define for
s, t, v ∈ V

δs•(v) :=
∑

t∈V

∑

P∈SPst(v)
fs,t,P (dP (s, v))

σst
(25)

δ•t(v) :=
∑

s∈V

∑

P∈SPst(v)
f̄s,t,P (dP (v, t))

σst
(26)

δs•(v) and δ•t(v) are contributions to the general betweenness centrality value of v for a forward
pivot s ∈ V or a backward pivot t ∈ V . Define a random variable with equal distribution among
all 2n possible events. Analogous to (11),

X =

{

2n · δs•(v) if forward pivot s is chosen
2n · δ•t(v) if backward pivot t is chosen

(27)

27



Lemma 2 X is an unbiased estimator meaning ∀v ∈ V : E(X) = cB(v) for all methods
constructed satisfying conditions listed above.

Proof.

E(X)
(27)
=

1

2n

(

∑

s∈V

(2n · δs•(v)) +
∑

t∈V

(2n · δ•t(v))
)

(25),(26)
=

∑

s∈V

∑

t∈V

∑

P∈SPst(v)
fs,t,P (dP (s, v))

σst
+
∑

t∈V

∑

s∈V

∑

P∈SPst(v)
f̄s,t,P (dP (v, t))

σst

=
∑

s,t∈V

∑

P∈SPst(v)

(

fs,t,P (dP (s, v)) + f̄s,t,P (dP (v, t))
)

σst

(22),(8)
=

∑

s,t∈V

∑

P∈SPst(v)
1

σst
=

∑

s,t∈V

σst(v)

σst

(1)
= cB(v)

�

Brandes’ Method

Brandes’ method does not need the above created complex design. Definitions of fℓ (12) and
f̄ℓ (13) still apply and no dP function is required.

Linear Scaling

Linear scaling needs the same adaptations as Brandes’ method to work with general betweenness
centrality instead of canonical betweenness centrality. Definitions (14) and (15) still apply.

Bisection Method

The bisection method is the reason why we introduced the dP function. In common cases unit
distance can only be defined on an a distinct path. The unit distance on a path with few
long edges is different than the unit distance on a path with many short edges, although both
paths have the same length. Functions fℓ (16) and f̄ℓ (17) are still the same as for canonical
betweenness centrality. If we used shortest path distance instead of unit distance the complex
design would not be necessary.

The bisection method for general betweenness centrality implemented with the same algorithm
as Canonical-Bisection has time requirements not in O(SSSP ) +O(n) because there could be
too many shortest paths.

∑

s,t∈V

|SPst| ∈ ω(n) (28)

For example in a grid like in Figure 16, two vertices s, t ∈ V with horizontal distance a and
vertical distance b have |SPst| =

(

a+b
a

)

. Having a r× r grid and looking at vertices s in top left
corner and t in bottom right corner yields an exponential number of shortest paths.

|SPst| =
(

2r

r

)

∈ Ω(2r) (29)
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Therefore approximation of general betweenness centrality with the bisection method can be
time-consuming. Because we compare all algorithms by runtime, we use another approach to
add a variant of the bisection method and compare it to the pure bisection method. The variant
uses sampling of shortest paths. For each sample only one shortest path between each pair of
vertices is taken into account. For each vertex s ∈ V all shortest path with source s must form
a tree so they can be processed efficiently.

We introduce a notation for subpaths of a path P ∈ SPst, s, t ∈ V . For v ∈ V , s �P v let
P |s→v denote the subpath from s to v. Let h be the number of samples. Let P ist ∈ SPst be
randomly chosen satisfying

∀s, t1, t2, w ∈ V : w ∈ P ist1 ∩ P ist2 ⇒ P ist1 |s→w = P ist2 |s→w (30)

For s ∈ V , i ∈ {1, . . . , h} fixed, if two chosen shortest paths have a vertex w in common, the
subpath between s an w must be the same leading to a shortest path tree with source s.

A sample i contributes to cB(v) if v ∈ qist. To define the contribution for a forward and a
backward pivot another mathematical definition is necessary.

[x] =

{

1 if x is true
0 if x is false

With this mathematical tool the contributions for a forward pivot δs•(v) and for a backward
pivot δ•t(v) are as follows.

δs•(v) :=
∑

t∈V

(

1

h
·
h
∑

i=1

([

v ∈ qist
]

fs,t,qist(dqist(s, v))
)

)

(31)

δ•t(v) :=
∑

s∈V

(

1

h
·
h
∑

i=1

([

v ∈ qist
]

f̄s,t,qist(dqist(v, t))
)

)

(32)

Sampling limits the number of visited shortest paths resulting in an algorithm with time re-
quirements in O(SSSP )+O(hn). Note the divisor h instead of σst because if there is a shortest
path between two vertices, exactly h not necessarily distinct paths are taken into account. All
regarded shortest paths between a pair of vertices should contribute at most 1 to the general
betweenness centrality value of a vertex v. We use the same extrapolation as above but Lemma
2 cannot be applied. To find an unbiased estimator we need to have an uniform distribution
among all P ∈ SPst. We describe how we select P ∈ SPst and we find an uniform distribution.
All shortest path with source s form an acyclic graph. We form a shortest path tree out of
this acyclic search graph. Each vertex can have multiple parents. If we reduce the number of
parents to one, we will gain a tree. To get a unform distribution among all shortest paths, a
single parent p of t is chosen randomly with weight σsp, i.e. with probability σsp

σst
.

Lemma 3 P ist is chosen in SPst with uniform distribution.

Proof. Induction for σst:
σst ∈ {0, 1} :

√
σst ≥ 2 : prob(parent p is chosen) = σsp

σst
, prob(P isp ∈ SPsp is chosen) = 1

σsp
(IH)

⇒ prob(P ist ∈ SPst is chosen) = σsp
σst
· 1
σsp

= 1
σst

�
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Now it is only a small step to see E(X) = cB(X). Because 1
h
·E(h ·X) = E(X), only the case

h = 1 needs to be considered. We forget index i and only choose paths Pst. Define another
random variable Yst to represent [v ∈ Pst].

Yst =

{

1 if v ∈ Pst
0 if v /∈ Pst (33)

The definition of σst, σst(v) and Lemma 3 yield

E(Yst) =
σst(v)

σst
(34)

Now it is possible to prove that random variable X is unbiased.

Lemma 4 E(X) = cB(v) for the bisection sampling method

Proof.

E(X) =
1

2n
·
(

∑

s∈V

2n · δs•(v) +
∑

t∈V

2n · δ•t(v)
)

(31),(32)
=

∑

s∈V

∑

t∈V

E (Yst · fs,t,Pst(dPst(s, v))) +
∑

t∈V

∑

s∈V

E
(

Yst · f̄s,t,Pst(dPst(v, t))
)

=
∑

s,t∈V

E
(

Yst
(

fs,t,Pst(dPst(s, v)) + f̄s,t,Pst(dPst(v, t))
))

(22),(8)
=

∑

s,t∈V

E(Yst)

(34)
=

∑

s,t∈V

σst(v)

σst

(1)
= cB(v)

�

Error bounds

Error bounds of canonical betweenness centrality approximation also apply to general between-
ness centrality approximation. But we need to treat the bisection sampling method differently.
All shortest paths between s, t ∈ V can contribute to cB(v) by at most one since σst(v)

σst
≤ 1.

Because the definitions of fℓ and f̄ℓ have not been changed, M = 2n(n− 2) ·α is still an upper
bound leading to the same error bounds.

Bisection sampling could be interpreted in two different ways, only the first one is valid. Either
see the contribution of one pivot as an evaluation of a random variable. Then M with α = 1
is an upper bound. As the upper bound is independent of the number of samples even the
bisection sampling method with one sample has the error bounds proven in Section 2.

Or one could see each pivot and each sample as an distinct evaluation of a random variable.
Then it would have same upper bound M but more evaluations. But those evaluations would
not be independent because all h samples are from the same pivot, and Hoeffdings inequality
(18) cannot be applied.
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3.2 Algorithms

The algorithms for canonical betweenness centrality approximation only need small modifica-
tions to estimate general betweenness centrality. First we will present Brandes’ algorithm and
then introduce the bisection algorithm and the bisection sampling algorithm.

Brandes’ Algorithm

Brandes modifies the breath first search to cope with multiple shortest paths. It is necessary
to store the number of shortest paths and multiple parents per vertex. That means the result
is an acyclic graph with distinct root. Same modifications are needed for Dĳkstra’s algorithm
in weighted graphs but they do not affect asymptotic time requirements. Because more than
one shortest path is possible the recursion equation (21) is slightly different. Now the values of
a child vertex w need to be weighted with fraction σsv

σsw
of shortest path that lead to w via v.

δs•(v) =
∑

w∈Cs(v)

σsv
σsw

(1 + δs•(w)) (35)

Brandes’ algorithm differs, besides MultipathSSSP (Line 5) and multiple parents (Line 10),
only by this factor σsv

σsw
(Line 11), see Algorithm 4.

Algorithm 4: Betweenness-Brandes

Input: Graph G = (V,E) with n = |V |, number of pivots k
Output: Vertex-array c of estimated general betweenness centrality values for each v ∈ V
foreach v ∈ V do1

c[v]← 0;2

for i = 1 to k do3

Choose s ∈ V and search direction uniformly at random;4

Solve MultipathSSSP(s,direction);5

foreach v ∈ V do6

clocal[v]← 0;7

forall w ∈ V reachable from s, w 6= s in order of non-increasing distance to s do8

c[w] = c[w] + clocal[w];9

forall parents v of w do10

clocal[v]← clocal[v] + σsv
σsw
· (clocal[w] + 1);11

// extrapolate

foreach v ∈ V do12

c[v]← c[v] · 2n
k

13

return c14

Linear Scaling Algorithm

The linear scaling algorithm is modified like Brandes’ algorithm: MultipathSSSP and the factor
σsv
σsw

are changed. Since the modifications to Algorithm 2 are so small, we omit the pseudocode
of the Betweenness-Linear-Scaling algorithm. The recursion equation of Brandes’ algorithm
(35) needs a small change to work for the linear scaling algorithm. Because of linear scaling

contributions of a shortest path between s and t to cB(v) are weighted with d(s,v)
d(s,t)

. The numerator
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depends on v while the denominator does not. The trick is to add up 1
d(s,t)

and multiply with

d(s, v) at the end.

δs•(v) = d(s, v) ·
∑

w∈Cs(v)

(

σsv
σsw
· 1 + δs•(w)

d(s, w)

)

(36)

clocal[v] = δs•(v)
d(s,v)

still holds like in Section 2.2.

Bisection Algorithm

The bisection algorithm processes each shortest path from source s and adds up fractions 1
σsv

instead of 1 for each shortest paths between s and v, see Algorithm 5 Line 27. Also the former
data structure with first child and next sibling cannot be used any longer because there can be
multiple parents and the next sibling value depends on the parent. An array of children is used
instead.

Recursion equation (35) cannot be applied as each vertex v is visited σsv times by the loop start-
ing at Line 9. Brandes’ algorithm only visits each vertex once. To prove that the Betweenness-
Bisection algorithm implements the bisection method, another recursion equation is necessary.
We will only present this equation for the forward direction. The backward direction is analo-
gous. For s, t, v ∈ V, P ∈ SPsv let σst(v, P ) be the number of shortest paths between s and t
with path prefix P . The connection to σst is simply

σst(v) =
∑

P∈SPsv

σst(v, P )

because all shortest path from s via v have a prefix that is a shortest path between s and v.
The contribution of a pivot s and path prefix P is then

δs•(v, P ) :=
∑

t∈V

σst(v, P )

σst
(37)

leading to the contribution of a pivot s:

δs•(v) =
∑

P∈SPsv

δs•(v, P ) (38)

To get a recursion with all children w of v we need to add up all contributions along shortest
paths Q ∈ SPsw that have the path P ∈ SPsv as prefix.

δs•(v, P )
(∗)
=

∑

w∈Cs(v)

(

σsw(v, P )

σsw
+ δs•(w,P )

)

(∗∗)
=

∑

w∈Cs(v)

∑

Q∈SPsw,Q|s→v=P

(

1

σsw
+ δs•(w,Q)

)

(39)

(∗): the fractions of shortest paths with prefix P are the fraction of shortest paths from s to

w ∈ Cs(v) via v (= σsw(v,P )
σsw

) plus the fractions of shortest paths w lies on (= δs•(w,P )).
(∗∗): all different shortest paths Q from s to w with prefix P are added up separately. If there
is only one edge between v and w, there will only be one path. But our definition of a graph
allows multiple edges, leading to the above equation.

In Algorithm 5 the stack S represents the path from s to w. In Line 23 identify a = δs•(w, S).
This line is executed for each different shortest path S ∈ SPsw resulting in

c[w] =
∑

P∈SPsw

δs•(w, S)
(38)
= δs•(w)
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Algorithm 5: Betweenness-Bisection

Input: Graph G = (V,E) with n = |V |, number of pivots k
Output: Vertex-array c of estimated general betweenness centrality values for each v ∈ V
foreach v ∈ V do1

c[v]← 02

for i = 1 to k do3

Choose s ∈ V and search direction uniformly at random;4

Solve MultipathSSSPWithChildren(s,direction);5

S ← ∅ ; // stack with random access, items (vertex,counter)6

C ← ∅ ; // stack of children7

push(S,(s, 0));8

while S 6= ∅ do9

// count for vertex in the middle only on forward search

if forward search then10

if size(S)= 1 then m← 0 else m←
⌊

size(S)−2
2

⌋

;11

else12

m←
⌊

size(S)−1
2

⌋

;13

(v, a)← S[m];14

S[m]← (v, a− 1
σsv

); // ‘bisection trick’15

if back(S) has children then16

push(C,all children of back(S));17

v ← pop(C);18

push(S,(v, 0));19

else20

// remove vertices from stack with no children left and increment

counters

while S 6= ∅ and back(S) has no children left on C do21

(w, a)←back(S);22

c[w]← c[w] + a;23

pop(S);24

if S 6= ∅ then25

(v, b)←back(S);26

back(S)← (v, b+ a+ 1
σsw

);27

if back(S) has children left on C then28

w ← pop(C);29

push(S,(w, 0));30

// extrapolate

foreach v ∈ V do31

c[v]← c[v] · 2n
k

32

return c33
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In Line 27 identify a+ 1
σsw

= δs•(w, S) + 1
σsw

. This recursion matches equation (39).

Sampling is implemented by forming a tree out of the resulting acyclic graph of MultipathSSSP.
For each vertex v, only one parent p is randomly chosen with probability σsp

σsv
. Our implementa-

tion randomly chooses an integer x between 1 and σsv. Let p1, . . . , po be the parents of v. Then

pj is chosen if x ∈
[

j−1
∑

i=1
σspi + 1,

j
∑

i=1
σspi

]

. The Canonical-Bisection algorithm can be applied for

each of the h samples if results are divided by h. We do not present Betweenness-Bisection-
Sampling algorithm here.

Per pivot O(SSSP ) +O(hn) time is required, or O(SSSP ) +O(n) if h is fixed.

3.3 Experiments

The same compiler and the same hardware as in Section 2.3 are used.

To test the algorithms to approximate general betweenness centrality we focus on a different
graph than for canonical betweenness centrality. The road graph of Belgium that was used there
has only few multiple shortest paths and is therefore not appropriate to test general betweenness
centrality. We used an Actor network based on imdb.com [14] instead, with n = 392 400,
m = 16 557 451. It is an unweighted undirected graph where each vertex represents an actor
and for each movie there is an edge between each pair of actors that appear in the movie.
Multiple edges between two actors are possible. Because this graph is unweighted, there is no
difference between unit distance and shortest path distance. Therefore, we do not distinguish
between the bisection method with unit distance and with shortest path distance. We compared
Brandes’ method to the bisection method, the bisection sampling method with 2, 4, 8 and 16
samples, and linear scaling. The definitions of error scores as in Section 2.3 now apply to general
betweenness centrality cB(v). The same definition of number of pivots applies. The number of
pivots refers to Brandes algorithm, all other algorithms get at most as much time as Brandes
algorithm to calculate their results. Also the number of pivots specifies the number of forward
pivots and the number of backward pivots, e.g. 1024 pivots indicate 1024 forward pivots and
1024 backward pivots.

Runtimes of the different algorithms can be found in Table 2. Brandes’ method and linear
scaling show similar time requirements. The bisection sampling runtime increases with the
number of samples as expected. The bisection algorithm without sampling has a much larger
runtime, we will analyze this later.

The Euclidean distance and the geometric mean of relative error in Figure 19 indicates same
good results as for canonical betweenness centrality. Brandes’ method compared to the bisection

algorithm seconds/pivot
Brandes 6.254
bisection 29.382
bisection sampling (2 samples) 6.581
bisection sampling (4 samples) 7.014
bisection sampling (8 samples) 7.712
bisection sampling (16 samples) 9.415
linear scaling 6.284

Table 2: Runtime of different algorithms that approximate general betweenness centrality
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sampling method with 2 samples yields an improvement of the Euclidean distance by factor
3.9− 5.2. Or the other way round Brandes’ algorithm needs ≈ 16 times longer to achieve the
same results as the bisection sampling method with 2 samples. The bisection sampling method
is better than the pure bisection method. Our experiments also suggests that two samples
for bisection sampling are enough, at least for this graph. But for bisection and bisection
sampling the number of vertices v with capproxB (v) = 0 is larger than for Brandes’ method and
linear scaling. The bisection algorithm has theses larger numbers because time is short, it only
processes 7 or 27 pivots in the time Brandes’ algorithm processes 32 or 128 pivots. Interestingly
it still outperforms Brandes’ method. And in the case of the bisection sampling algorithm, many
vertices have zero value because not all shortest paths are regarded. In both cases only vertices
v with small cC(v) seem to be affected because the Euclidean distance is small.

We introduce a rank rB(v) among all nodes v ∈ V like in Section 2.3. Global scores regarding
the rank are shown in Figure 20. The inversion number and the geometric mean of relative rank
error show different results than Euclidean distance and geometric mean of rank error. Linear
scaling is always better than Brandes’ method. But both methods show show stagnating results
before they head down after thousands of pivots. The bisection method and the bisection
sampling method beat Brandes’ method not until 1024 pivots. But they have a near-linear
decrease in the double-logarithmic plot. become better with increasing number of pivots. The
break point is around 1024 pivots. The bisection sampling methods benefits of more samples.
In Figure 21 we compare the methods by number of pivots instead of runtime. The bisection
method is in this comparison the best method. Therefore a linear time algorithm for the
bisection method would make it the superior approximation method.

To further analyze the differences between the approximation methods we need to introduce
levels like in Section 2.3. Figure 22 only shows results for Brandes’, the bisection, bisection
sampling with 2 and 8 samples and linear scaling. Especially in Level 1 and 2 many vertices
are underestimated.

The bisection sampling method with 2 samples shows best results. It only underestimates
unimportant nodes in Levels 0-3 to much. It seems that bisections sampling throws away to
much information because there are to many different shortest path. This affects the results
especially for small numbers of pivots. The bisection method often underestimates general
betweenness centrality values of vertices indicated by outliers in levels 3 and 4 because it can
only process few pivots during the limited runtime.

Results are not as good as for the Belgian graph with canonical betweenness centrality. But this
does not mean that our approximation algorithms for general betweenness centrality are worse
than our approximation algorithms for canonical betweenness centrality. First, the centrality
index is different and second, the graph type is completely different. The only thing both
graphs have in common that they are not synthetic.

The plot for 128 pivots indicates that more pivots yield better results indicating that our
methods are unbiased and will asymptotically reach relative error 1. The same 0.5 phenomenon
for Brandes’ method occurs as for canonical betweenness centrality, now also slightly affecting
linear scaling. Level 0 shows no error because all vertices v in level 0 have cB(v) = 0. Plots of
relative error distinguished by more levels can be found in the appendix, Section 5.

Relative rank errors in Figure 23 indicate similar results as relative centrality value errors.
Many vertices are placed to low in rank because there are too few pivots. Differences between
32 and 128 pivots indicate that more pivots will alleviate the problem. Except for the pure
bisection method, Brandes’ method performs worse than our presented methods.

35



10
−

3
10

−
2

10
−

1

10
−

3
10

−
2

10
−

1

16 32 64 128 256 512 1024 2048 4096 8192

E
uc

lid
ea

n 
di

st
an

ce

Brandes
bisection
bisection sampl. (2)
bisection sampl. (4)
bisection sampl. (8)
bisection sampl. (16)
linear

10
−

1
3

⋅1
0−

1
10

0

10
−

1
3

⋅1
0−

1
10

0
16 32 64 128 256 512 1024 2048 4096 8192

ge
om

et
ric

 m
ea

n 
of

 r
el

at
iv

e 
er

ro
r 

m
in

us
 1

3
⋅1

02
10

3
3

⋅1
03

10
4

3
⋅1

02
10

3
3

⋅1
03

10
4

16 32 64 128 256 512 1024 2048 4096 8192

pivots for Brandes’ algorithm

# 
of

 v
er

tic
es

 w
ith

 w
ro

ng
 e

st
im

at
ed

 v
al

ue
 0

Figure 19: Global scores for general betweenness centrality estimation
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graph vertices edges source
Belgian road network 463 514 596 119 PTV AG
Belgian road network with unit distance 463 514 596 119 PTV AG
US patent network 3 774 769 16 518 947 [12]
World-Wide-Web graph 325 729 1 497 135 [14]
CNR 2000 Webgraph 325 557 3 216 152 [8]
CiteSeer citation network 268 495 2 313 294 [6]
CiteSeer co-authorship network 227 320 1 628 268 [6]
CiteSeer co-paper network 434 102 32 073 440 [6]
DBLP co-authorship network 299 067 1 955 352 [7]
DBLP co-paper network 540 486 30 491 458 [7]

Table 3: Other tested real-world networks

We achieved similar results for other real-world networks, listed in Table 3. The citation, co-
authorship and co-paper networks are crawled from CiteSeer of DBLP. A co-authorship network
has authors as vertices and edges between them if they wrote a paper together. Opposite is
the co-paper network with papers as vertices and edges between them if they share at least one
author.

Figure 24 shows the improvement yielded by bisection sampling with 2 samples over Brandes’
method. With respect to the Euclidean distance, the bisection sampling method is always
better than Brandes’ method. But with growing number of pivots the difference gets smaller
and smaller. Surprisingly the inversion number shows a completely different picture. An ex-
planation would be that after a few pivots the estimations for the most important vertices are
quite accurate, even with Brandes’ method, leading to a small distance. However Brandes’
estimation of unimportant vertices is still bad. For the inversion number the importance of
vertices is irrelevant. The bisection sampling method takes advantage of that and shows in-
creasing difference to Brandes’ method. But bisection sampling does not perform that well on
all graphs. The directed graphs from Table 3, the US patent network and the web graphs,
are more difficult to approximate. Bisection sampling is sometimes better, sometimes worse.
Linear scaling is always better, see Figure 25. Shortest path searches turned out to be very
local. This means that all approximation algorithms have trouble eliminating false zeros for
nodes of small betweenness. This is a disadvantage for bisection sampling since it is slower and
since it does not regard all shortest paths. On the other hand, the same effect makes these
networks relatively easy for the exact algorithm. For example, our implementation solves the
US patent graph in 127 min, only 2.5 times more time than [2] need using 16 IBM-P5 processor
cores.
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compared to linear scaling
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Problems of the Methods

All methods have the same problems as for canonical betweenness centrality.

The bisection method protrudes because of its runtime. Processing the acyclic shortest path
graph, the result of the MultipathSSSP, is time-consuming. A tree has not more than (n−1) =
392 400 edges. In Figure 26 you see that for ≈ 25 000 pivots the graph is a tree because
there are no additional edges. For the remaining pivots there are up to 5 893 513 additional
edges, 4 117 080 on average, more than ten times larger than n. The runtime of the bisection
algorithm comprises of the BFS runtime (the graph has unit distance) and the DFS processing
of the acyclic shortest path graph. The BFS runtime is only slightly affected by additional
edges whereas additional edges have huge impact to the DFS processing of the graph. With
this knowledge, runtimes in Table 2 can be understood.

Figure 26: Additional edges in acyclic graph of SSSP. Horizontally number of additional
edges, vertically frequency.
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4 Conclusion

Our new approximation methods linear scaling and bisection for canonical betweenness cen-
trality and linear scaling and bisection sampling for general betweenness centrality show better
results than Brandes’ method. In particular when good approximations of unimportant vertices
are required. They are more stable, independent of the number of pivots. Linear scaling is a
small modification to Brandes’ method with same space requirements. The bisection method
for canonical betweenness centrality and the bisection sampling method for general betweenness
centrality show best approximation results with time requirements still in O(SSSP ) + O(n),
but they need additional space.

Robust statistics could be applied to all methods to eliminate outliers. The q smallest and
highest contributions are not taken into account. This will probably gain more stable results
and limit the maximum error. Local search around vertices with estimated value zero could be
used to check whether vertices actually have value zero or not. An approach would be to use all
vertices of the graph as pivots but limit the number of settled vertices in Dĳkstra’s algorithm.
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5 Appendix

5.1 Canonical Betweenness Centrality

Figure 27 shows relative error for the Belgian road network. Each dot represents a vertex in
the network, x-value is the exact canonical betweenness centrality value, y-value is the relative
error.

Brandes bisection (unit)

linear scaling bisection (shortest path)

Figure 27: Belgian road network, canonical betweenness centrality, each possible cC(v) is a
distinct level horizontally, relative error vertically, 32 pivots, from left to right, top to bottom:

Brandes’, bisection (unit), linear scaling, bisection (shortest path) method

5.2 General Betweenness Centrality

Figure 28 shows relative error for the actor graph. Each dot represents a vertex in the graph,
x-value is the exact general betweenness centrality value, y-value is the relative error.
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Brandes bisection

bisection sampling (2 samples) bisection sampling (4 samples)

bisection sampling (8 samples) linear scaling

Figure 28: Actor graph, general betweenness centrality, each possible cB(v) is a distinct level
horizontally, relative error vertically, 32 pivots, from left to right, top to bottom: Brandes’,

bisection, bisection sampling (2,4,8), linear scaling

47



References

[1] J. M. Anthonisse. The rush in a directed graph. Technical Report BN 9/71, Stichting
Mathematisch Centrum, Amsterdam, 1971.

[2] David A. Bader and Kamesh Madduri. Parallel algorithms for evaluating centrality indices
in real-world networks. In ICPP, pages 539–550. IEEE Computer Society, 2006.

[3] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25(2):163–177, 2001.

[4] Ulrik Brandes, editor. Network analysis. Springer, 2005.

[5] Ulrik Brandes and Christian Pich. Centrality estimation in large networks. International
Journal of Bifurcation and Chaos, special issue on Complex Networks’ Structure and Dy-
namics, to appear.

[6] CiteSeer. Scientific Literature Digital Library. http://citeseer.ist.psu.edu/, 2007.

[7] DBLP. DataBase systems and Logic Programming. http://dblp.uni-trier.de/, 2007.

[8] Laboratory for Web Algorithmics.
http://law.dsi.unimi.it/index.php?option=com_include&Itemid=65.

[9] L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40:35–41,
1977.

[10] Ronald J. Gutman. Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In Proceedings of the 6th Workshop on Algorithm Engineering
and Experiments (ALENEX’04), pages 100–111. SIAM, 2004.

[11] P. Hage and F. Harary. Eccentricity and centrality in networks. Social Networks, 17:57–63,
1995.

[12] A. B. Jaffe Hall, B. H. and M. Tratjenberg. The NBER Patent Citation Data File: Lessons,
Insights and Methodological Tools. NBER Working Paper, 8498, 2001.

[13] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):713–721, 1963.

[14] Notre Dame CNet resources. http://www.nd.edu/~networks/.

[15] Gert Sabidussi. The centrality index of a graph. Psychometirka, 31:581–606, 1966.

[16] Dominik Schultes and Peter Sanders. Dynamic highway-node routing. In 6th Workshop
on Experimental Algorithms, volume 4525 of LNCS, pages 66–79. Springer, 2007.

[17] Alfonso Shimbel. Structural parameters of communication networks. Bulletin of Mathe-
matical Biophysics, 15:501–507, 1953.

48

http://citeseer.ist.psu.edu/
http://dblp.uni-trier.de/
http://law.dsi.unimi.it/index.php?option=com_include&Itemid=65
http://www.nd.edu/~networks/

	1 Introduction
	1.1 Motivation
	1.2 Definition
	1.3 Related work
	1.4 Our contribution
	1.5 Outline

	2 Approximation of Canonical Betweenness Centrality
	2.1 Methods
	2.2 Algorithms
	2.3 Experiments

	3 Approximation of General Betweenness Centrality
	3.1 Methods
	3.2 Algorithms
	3.3 Experiments

	4 Conclusion
	5 Appendix
	5.1 Canonical Betweenness Centrality
	5.2 General Betweenness Centrality


