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‘ Many-to-Many Shortest Path Problem'

Given:

[J graph G = (V,E)
[] set of source nodes SCV

[] set of target nodes T C V

Task: compute |§ x |T | distance table * T

containing the shortest path distances

Here: concentrate on road networks
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Applications

[1 Logistics
— vehicle routing problem

— input for traveling salesman solver

[1 Preprocessing for Point-to-Point Techniques
— Precomputed Cluster Distances [MaueSandersMatijevic2006]

— Transit Node Routing [next talk]
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Simple Solutionﬂ

Example: 10000 X 10000 table S
in Western Europe

[1 apply SSSP algorithm |§] times

~ 10000 X 10s~ one day
(e.g. DIJKSTRA)

[] apply P2P algorithm |§| x |T| times

1 ~ 100002 X 1ms = one day
(e.g. highway hierarchies™)

lrequires about 15 minutes preprocessing time
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‘ Our Solution I

Example: 10000 x 10000 tabl
In Western Europe

[ many-to-many algorithm .
X one minute

based on highway hierarchies!

2

lrequires about 15 minutes preprocessing time
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Highway Hierarchieszl

[ ] complete search within a local area

[ ] search in a (thinner) highway network

= minimal graph that preserves all shortest paths

[ ] contract network, e.g., ;I; »

[] iterate ~~ highway hierarchy 0 o

presented at ESA 2005 and ESA 2006
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Local Area I

[1 choose neighbourhood radius r(S)
(by a heuristic)

[] define neighbourhood of S

AN (s):=4{veV |d(sv) <r(s)}
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‘ Highway Network'

A(S) A(t)

- Highwa -
/ o \
Edge (u,v) belongs to highway network iff there are nodes Sand { s.t.

[J (u,V) is on the shortest path from Sto t

and

[J (u,V) is not entirely within A/ (S) or A’ (t)
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Level 0-1
Level 2

Level 3

Level 4

Example: New Orlean

I
LUy
11 1l

Tt
:::::::::

I——l LV /
o tra:c m[\b{ty logistics. (’%’ Jﬂ(

</

NEAY




Knopp/Sanders/Schultes/Schulz/\Wagner: Many-to-Many Shortest Paths o ° 10

Search Space Examplj
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\Main Idea.

[] instead of S{ x | T| bidirectional highway queries

L[]  perform SH—T unidirectional highway queries

Algorithm I

[J maintain an |§ x |T | table D of tentative distances

(initialize all entries to ©0)
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[] foreacht € T, perform backward search up to the top level,

store search space entries (t,u,d(u,t))
[ ] arrange search spaces: create a bucket for each U

[] for each S € § perform forward search up to and including the top level,
at each node U, scan all entries (t,u,d(u,t)) and
compute d(s,u) + d(u,t), update DS, t]
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‘ Asymmetry I

for large distance tables, most time spent on bucket scanning

Solution: use less levels ~~ strengthen the asymmetry

[] backward search spaces get smaller ~~ less bucket entries

[] forward search spaces get bigger
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Experiments'
Input: & ot

[ ] Western European road network (18 million nodes)
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[ ] random source/target node sets

Results:
table size time  speeduf— DIIKSTRA)
1000 X 1000 255 4680
10000 X 10000 58s 2017

Break Even Point (w.r.t. preprocessing costs): table size 100 x 100

Real-World Instances:similar performance
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Symmetric Instanceﬂ
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100 x 100 500 x 500 2000 x 2000 8000 x 8000 20000 x 20000
| | | | |
B Bucket Scanning
O Forward Search
B Sorting
B Backward Search
= ]

5 6 7 8 9 5 6 7 8 9

5 6 7 8 9

Topmost Level

5 6 7 8 9

5 6 7 8 9
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Comparisons'
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Highway Hierarchies®
Dijkstra
Many-to—Many HH (Level 6)

Many-to—Many HH (Level 7) [
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‘Asymmetric Instanceﬂ

O
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20 x 162000 50 x 64800 100 x 32400 400 x 8100 1000 x 3240 1800 x 1800
| | | | | |
B Bucket Scanning
O Forward Search
7] B Sorting
B Backward Search
-
1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8 6 7 8 9

Topmost Level
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Summary

L] very efficient solution to the

many-to-many shortest path problem

[ ] requires little preprocessing time ~ 15 minutes

[ ] computes 10000 x 10000 table in ~ 1 minute
(0.6 s per entry)
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Additional Issues.

L] outputting paths
[] incremental computation

[] parallelization

\Future Work I

[ ] adapt preprocessing to specific source/target node sets

[ ] approach can be generalized to other
— non-goal-directed
— bidirectional

speedup techniques

O
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