

Accurate High-Performance Route Planning

Peter Sanders Dominik Schultes

Institut für Theoretische Informatik – Algorithmik II Universität Karlsruhe (TH)

Eindhoven, March 6, 2005

How to come from A to B?

Applications

Internet route planning (z.B. www.map24.de)

car navigation systems (embedded, radio replacement, PDA,...)

server based using mobile phone, ...

Basic Requirements

- exact fastest routes
- fast queries
- low memory requirements

2

DIJKSTRA's Algorithm

classical approach from graph theory

for computing shortest paths

too expensive for large street networks

(e.g., Western Europe: 22 mill. roads)

Bidirectional Search

Improvement of DIJKSTRA's Algorithm

bidirectional Dijkstra

Halves search space,

but still too slow

Naive Route Planning

1. Look for next motorway entrance

Naive Route Planning

- 1. Look for next motorway entrance
- 2. Get as close to target as possible using motorways

Naive Route Planning

- 1. Look for next motorway entrance
- 2. Get as close to target as possible using motorways
- 3. Route from motorway exit to target

Commercial Approach

Heuristic Highway Hierarchy

- **complete** search in **local** area
- search in (more sparse) highway network
- iterate → highway hierarchy

Defining the highway network:

use road category (highway, federal highway, motorway,...)

+ manual rectifications

delicate compromise

speed ⇔ **accuracy**

S

 \bullet

Our Approach

S

 \bullet

Exact Highway Hierarchy

- **complete** search in **local** area
- search in (more sparse) highway network
- iterate → highway hierarchy

Defining the highway network:

minimal network,

that preserves all shortest paths.

- + fully automatic (just fix neighborhood size)
- + uncompromisingly fast

Example: Karlsruhe

Fast Construction

Challenge

Avoid precomputation of shortest paths between all node pairs

Solution

From each node:

Search a local area

Example: from Karlsruhe, Am Fasanengarten 5

to Palma de Mallorca

Experiments		
W. Europe (PTV)		USA/CAN (PTV)
18 029 721	#nodes	18 741 705
42 199 587	#directed edges	47 244 849
19	construction [min]	30
2.45	search time [ms]	3.37
4 181	speedup (↔ DIJKSTRA)	3 316

~> quality advantage, advertisement argument

fast search

↔ cheap, energy efficient processors in mobile devices

- \rightsquigarrow low server load
- ~> lots of room for additional functionality
- fast preprocessing
- □ low space consumption
 - no manual postprocessing of data
 - \rightsquigarrow less dependence on data sources

organic enhancement of existing commercial solutions

e.g. \approx 22 mill. roads

pprox 3 ms on x86

pprox 30 min

 \ll data base

Future Work

combination with goal directed approaches

fast, local updates on the highway network (e.g. for traffi c jams)

Implementation for mobile devices
(flash access ...)

Industrial Cooperations

We help transforming technology into products: consulting

□ Joint projects for further features

