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Abstract. In [I], we presented a shortest path algorithm that allows
fast point-to-point queries in graphs using preprocessed data. Here, we
give an extensive revision of our method. It allows faster query and pre-
processing times, it reduces the size of the data obtained during the pre-
processing and it deals with directed graphs. Some important concepts
like the neighbourhood radii and the contraction of a network have been
generalised and are now more flexible. The query algorithm has been
simplified: it differs only by a few lines from the bidirectional version of
D1IKSTRA’s algorithm. We can prove that our algorithm is correct even
if the graph contains several paths of the same length.

Experiments with real-world road networks confirm the effectiveness
of our approach. Preprocessing the network of Western Europe, which
consists of about 18 million nodes, takes 15 minutes and yields 68 bytes of
additional data per node. Then, random queries take 0.76 ms on average.
If we are willing to accept slower query times (1.38 ms), the memory
usage can be decreased to 17 bytes per node. For the European and the
US road networks, we can guarantee that at most 0.05% of all nodes are
visited during any query.

1 Introduction

Computing fastest routes in road networks is one of the showpieces of real-world
applications of algorithmics. In principle we could use DIJKSTRA’s algorithm.
But for large road networks this would be far too slow. Therefore, there is con-
siderable interest in speedup techniques for route planning. Commercial systems
use information on road categories to speed up search. “Sufficiently far away”
from source and target, only “important” roads are used. This requires man-
ual tuning of the data and a delicate tradeoff between computation speed and
suboptimality of the computed routes. In a previous paper [1] we introduced
the idea to automatically compute highway hierarchies that yield optimal routes
uncompromisingly quickly. This was the first speedup technique that was able
to preprocess the road network of a continent in realistic time and obtain large
speedups (several thousands) over DIJKSTRA’s algorithm. Since this was a pro-
totype, we made several simplifying assumptions. Our system was limited to
undirected graphs, we only had a proof for a simplified version of the query
algorithm, practitioners criticised the considerable constant factor in space con-
sumption, and the query algorithm was fairly complicated.
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In this paper we tackle all these issues. We originally thought that this would
be a more or less routine case study in algorithm engineering. However, we
arrived at some algorithmically interesting new and more general concepts and
we obtained results we did not expect. In particular, our system became at the
same time considerably simpler, more space efficient, and faster with respect to
both preprocessing and query time.

Our Contributions. Perhaps the most crucial definition for highway hierarchies
is a specification of the concept of local search. Section [3 allows directed graphs
and an individual neighbourhood radius for each node. The highway network—a
set of edges that suffice for all shortest paths outside of local neighbourhoods—
can then still be computed using methods analogous to [I]. Since the highway
network is very sparse, it is then important to contract it by removing nodes of
small degree. In [I] this was done using specialised routines for attached trees
and lines of nodes with degree two. First experiments indicated that a straight
forward adaptation of these concepts to directed graphs leads to deteriorating
performance. In Section [l we describe a simpler, more general method that leads
to better performance even for undirected graphs: A node v can be bypassed by
replacing all edge pairs of the form (u,v), (v, w) with u # w by a shortcut (u,w).
For a tuning parameter ¢, if the number of introduced shortcuts is smaller than ¢
times the number of removed edges adjacent to v, the node is actually bypassed.

Section [l describes a simple query algorithm for directed highway hierarchies.
Its pseudocode is only four lines longer than code for ordinary bidirectional
DIJKSTRA. Since highway hierarchies are additionally similar to the heuristic
hierarchies used in industry, we are very optimistic that they are easy to use in
products. Moreover, the simplified algorithm also allows us to give a complete
correctness proof.

Section [0] deals with the abort criterion that can be applied when forward
and backward search have met. In contrast to the undirected prototype from
[1], we drop optimisations intended for pruning the search space. While this
inflates the search space by about 50%, our measurements indicate that the net
effect on the running time is an improvement by more than 50%. Furthermore,
we describe how an additional acceleration can be obtained by computing a
complete distance table for the topmost level of the highway hierarchy.

The experiments in Section [7 give a strong indication that directed highway
hierarchies are currently the most efficient technique for route planning. The
tuning parameters turn out to work uniformly well for all the inputs or at least
suboptimal values only lead to small performance degradations. Highway hier-
archies also allow per-instance worst case performance guarantees, i.e., we can
give a good approximation of the complete query time distribution including
the worst case for all n? possible query pairs without actually executing this
astronomic number of queries.

Related Work. For a detailed review of practical and theoretical speedup tech-
niques we refer to [2L[3L4]. Here we restrict ourselves to the latest news and the
concepts needed to understand the problems at hand. A classical technique is
bidirectional search, which simultaneously searches forward from s and back-
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wards from ¢ until the search frontiers meet. For the remaining techniques, we
distinguish between two basic speedup effects. Some techniques direct the search
towards the target node (and backward search towards the source node), other
approaches exploit the hierarchy inherent in road networks, and some incorpo-
rate both effects by storing information about nodes reached by shortest paths
via some edge. Besides highway hierarchies, the most effective hierarchy based
technique is reach based routing [5] which was considerably strengthened in [6].
Interestingly, the methods used to efficiently compute highway hierarchies in [I]
also turned out to be crucial for computing reaches. Reach based routing com-
bined with the strong sense of goal direction from the landmark method (the
REAL algorithm) beats [1] with respect to query time whereas it needs signif-
icantly more preprocessing time. Our new results achieve better query times, a
factor > 26 smaller preprocessing times, and need less space.

2 Preliminaries

Graphs and Paths. We expect a directed graph G = (V, E) with n nodes and m
edges (u,v) with nonnegative weights w(u,v) as input. We assume w.l.o.g. that
there are no self-loops, parallel edges, and zero weight edges in the input—they
could be dealt with easily in a preprocessing step. The length w(P) of a path
P is the sum of the weights of the edges that belong to P. P* = (s,...,t) is
a shortest path if there is no path P’ from s to ¢ such that w(P’) < w(P*).
The distance d(s,t) between s and ¢ is the length of a shortest path from s to
t. U P={(s,...,sup,ua,...,up,t',...,t) is a path from s to t, then P|y_y =
(s ur,ua,...,uE,t') denotes the subpath of P from s’ to t'.

DuksTRA’s Algorithm. DIJKSTRA’s algorithm can be used to solve the single
source shortest path (SSSP) problem, i.e., to compute the shortest paths from
a single source node s to all other nodes in a given graph. It is covered by
virtually any textbook on algorithms, so that we confine ourselves to introducing
our terminology: Starting with the source node s as root, DIJKSTRA’s algorithm
grows a shortest path tree that contains shortest paths from s to all other nodes.
During this process, each node of the graph is either unreached, reached, or
settled. A node that already belongs to the tree is settled. If a node wu is settled, a
shortest path P* from s to u has been found and the distance d(s,u) = w(P*) is
known. A node that is adjacent to a settled node is reached. Note that a settled
node is also reached. If a node u is reached, a path P from s to u, which might
not be the shortest one, has been found and a tentative distance 6(u) = w(P) is
known. Nodes that are not reached are unreached.

A bidirectional version of DIJKSTRA’s algorithm can be used to find a shortest
path from a given node s to a given node ¢. Two DIJKSTRA searches are executed
in parallel: one searches from the source node s in the original graph G = (V, E),
also called forward graph and denoted as G = (v, ﬁ), another searches from the
target node t backwards, i.e., it searches in the reverse graph G = (v, <E),
E = {(v,u) | (u,v) € E}. The reverse graph G is also called backward graph.
When both search scopes meet, a shortest path from s to ¢ has been found.
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3 Highway Hierarchy

A highway hierarchy of a graph G consists of several levels Go, G1,Go,...,GL,
where the number of levels L + 1 is given. We provide an inductive definition:
— Base case (G{), Gp): level 0 (Go = (Vp, Ep)) corresponds to the original graph
G; furthermore, we define G, := Gj.
— First step (G, — Gy41,0 < £ < L): for given neighbourhood radii, we will
define the highway network Gei1 of a graph Gj.
— Second step (G¢ — G),1 < £ < L): for a given set By C V; of bypassable
nodes, we will define the core G, of level £.

First step (highway network). For each node u, we choose a nonnegative neigh-
bourhood radius r;” (u) for the forward graph and a radius r; (u) > 0 for the
backward graph. To avoid some case distinctions, for any direction = € {—, «},
we set the neighbourhood radius 7,7 (u) to infinity for u ¢ V;/ and for £ = L.

The level-¢ neighbourhood of a node u € V) is N7 (u) :== {v € V] | dg(u,v) <
;" (u)} with respect to the forward graph and, analogously, N~ (u) := {v € V] |
dy (u,v) < r; (u)} with respect to the backward graph, where d;(u,v) denotes
the distance from u to v in the forward graph G, and d; (u, v) := d¢(v, u) in the
backward graph (CTg.

The highway network Gri1 = (Vog1, Eer1) of a graph G is the subgraph of
G, induced by the edge set Eyy1: an edge (u,v) € Ej belongs to Egy iff there
are nodes s,t € V/ such that the edge (u,v) appears in the canonical shortest
patH] (8,...,u,v,...,t) from s to ¢t in G}, with the property that v & N, (s)
and u & N, (t).

Second step (core). For a given set By C V; of bypassable nodes, we define
the set Sy of shortcut edges that bypass the nodes in By: for each path P =
(u,b1,ba, ..., by, v) with u,v € V;\ By and b; € By, 1 < i < k, the set Sy contains
an edge (u,v) with w(u,v) = w(P). The core G, = (V/, E}) of level ¢ is defined
in the following way: V/:=V; \ B, and E} := (E,; N (V) x V/)) U S,.

4 Construction

Neighbourhood Radii. We suggest the following strategy to set the neighbour-
hood radii. For this paragraph, we interpret the graph G, as an undirected graph,
i.e., a directed edge (u,v) is interpreted as an undirected edge {u, v} even if the
edge (v,u) does not exist in the directed graph. Let us fix any rule that decides
which element DIJKSTRA’s algorithm removes from the priority queue in the case
that there is more than one queued element with the smallest key. Then, during
a DIJKSTRA search from a given node w in the undirected graph, all nodes are
settled in a fixed order. The Dijkstra rank vk, (v) of a node v is the rank of v
w.r.t. this order. u has DIJKSTRA rank rk, (u) = 0, the closest neighbour v; of u

! For each connected node pair (s,t), we select a unique canonical shortest path in
such a way that each subpath of a canonical shortest path is canonical as well. For
details, we refer to [I].
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has DIJKSTRA rank rk,(v1) = 1, and so on. For a given parameter Hy, for any
node u € V/, we set 7,7 (u) := r; (u) := d; (u,v), where v is the node whose
DUKSTRA rank rky,(v) is Hy; dj” (u,v) denotes the distance between u and v
in the undirected graph. Applying this strategy to the forward and backward
graph one after the other in order to define individual forward and backward
radii yields a similar good performance, but needs twice the memory.

Fast Construction of a Highway Network. The fast construction method intro-
duced in [I] has been modified in order to deal with directed graphs and the new,
more general neighbourhood definition. For details, we refer to the full paper.

Contraction of a Graph. In order to obtain the core of a highway network,
we contract it, which yields several advantages. The search space during the
queries gets smaller since bypassed nodes are not touched and the construction
process gets faster since the next iteration only deals with the nodes that have
not been bypassed. Furthermore, a more effective contraction allows us to use
smaller neighbourhood sizes without compromising the shrinking of the highway
networks. This improves both construction and query times. However, bypassing
nodes involves the creation of shortcuts, i.e., edges that represent the bypasses.
Due to these shortcuts, the average degree of the graph is increased and the
memory consumption grows. In particular, more edges have to be relaxed during
the queries. Therefore, we have to carefully select nodes so that the benefits of
bypassing them outweigh the drawbacks.

We give an iterative algorithm that combines the selection of the bypassable
nodes B, with the creation of the corresponding shortcuts. We manage a stack
that contains all nodes that have to be considered, initially all nodes from V. As
long as the stack is not empty, we deal with the topmost node u. We check the
bypassability criterion #shortcuts < ¢ - (degiy, (v) + degoyt (u)), which compares
the number of shortcuts that would be created when u was bypassed with the sum
of the in- and outdegree of u. The magnitude of the contraction is determined
by the parameter c. If the criterion is fulfilled, the node is bypassed, i.e., it is
added to By and the appropriate shortcuts are created. Note that the creation of
the shortcuts alters the degree of the corresponding endpoints so that bypassing
one node can influence the bypassability criterion of another node. Therefore,
all adjacent nodes that have been removed from the stack earlier, have not been
bypassed, yet, and are bypassable now are pushed on the stack once again. It
happens that shortcuts that were created once are discarded later when one of
its endpoints is bypassed. Note that we will get a contraction that is similar to
our trees-and-lines method [I] if we set ¢ = 0.5.

5 Query

Our highway query algorithm is a modification of the bidirectional version of
DI1JKSTRA’s algorithm. For now, we assume that the search is not aborted when
both search scopes meet. This matter is dealt with in Section[@l We only describe
the modifications of the forward search since forward and backward search are
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symmetric. In addition to the distance from the source, the key of each node
includes the search level and the gap to the next applicable neighbourhood
border. The search starts at the source node s in level 0. First, a local search in
the neighbourhood of s is performed, i.e., the gap to the next border is set to the
neighbourhood radius of s in level 0. When a node v is settled, it adopts the gap
of its parent u minus the length of the edge (u,v). As long as we stay inside the
current neighbourhood, everything works as usual. However, if an edge (u,v)
crosses the neighbourhood border (i.e., the length of the edge is greater than
the gap), we switch to a higher search level £. The node u becomes an entrance
point to the higher level. If the level of the edge (u,v) is less than the new search
level 4, the edge is not relaxed—this is one of the two restrictions that cause the
speedup in comparison to DIJKSTRA’s algorithm (Restriction 1). Otherwise, the
edge is relaxedd. If the relaxation is successful, v adopts the new search level ¢
and the gap to the border of the neighbourhood of u in level ¢ since u is the
corresponding entrance point to level /.

We have to deal with the special case that an entrance point to level ¢ does
not belong to the core of level £. In this case, as soon as the level-¢ core is
entered, i.e., a node u € V/ is settled, u is assigned the gap to the border
of the level-¢ neighbourhood of u. Note that before the core is entered, the
gap has been infinity. To increase the speedup, we introduce another restriction
(Restriction 2): when a node u € V} is settled, all edges (u,v) that lead to a
bypassed node v € By in search level £ are not relaxed.

Despite of Restriction 1, we always find the optimal path since the construc-
tion of the highway hierarchy guarantees that the levels of the edges that belong
to the optimal path are sufficiently high so that these edges are not skipped.
Restriction 2 does not invalidate the correctness of the algorithm since we have
introduced shortcuts that bypass the nodes that do not belong to the core. Hence,
we can use these shortcuts instead of the original paths.

The Algorithm. We use two priority queues a and <C_2, one for the forward search
and one for the backward search. The key of a node w is a triple (6(u),é(u),
gap(u)), the (tentative) distance §(u) from s (or t) to u, the search level £(u),
and the gap gap(u) to the next applicable neighbourhood border. A key (6, ¢, gap)
is less than another key (6’, ¢/, gap’) iff 6 < 8 or 6 =8 AL > or 6 =8 N =LA
gap < gap’. Figure [Il contains the pseudo-code of the highway query algorithm.
The proof of correctness is included in the full paper.

6 Optimisations

Abort on Success. In the bidirectional version of DIJKSTRA’s algorithm, we can
abort the search as soon as both search scopes meet. Unfortunately, this would be
incorrect for our highway query algorithm. We therefore use a more conservative
criterion: after a tentative shortest path P’ has been encountered (i.e., after both
search scopes have met), the forward (backward) search is not continued if the

2 To relaz an edge means to execute Line 11 in Fig. [
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input: source node s and target node ¢

@).insert(s7 (0,0,797(8))); a.insert(t, (0,0,79 (t)));
2 while (QUQ #0) do {
=e{—, <} // select direction
u = Q.deleteMin();
if gap(u) # oo then gap’ := gap(u) else gap’ := ry(,)(u);
foreach e = (u,v) € E do {
for (£:=((u), gap := gap’; w(e) > gap; £++)

o [0]= o

gap = 151 (u); // go “upwards”
8] if £(e) < £ then continue; // Restriction 1
9| if u € V) Av € B, then continue; // Restriction 2
10 k:= (6(u) +w(e), £, gap — w(e));

[
[y

ifve é then é.decreaseKey(fu, k); else é.insert(v, k);

= e

w N

—
-

Fig. 1. The highway query algorithm. Differences to the bidirectional version of D1JK-
STRA’s algorithm are marked: additional and modified lines have a framed line number;
in modified lines, the modifications are underlined.

minimum element u of the forward (backward) queue has a key 6(u) > w(P’).
More sophisticated rules used in [I] turned out to be too expensive in terms of
query time.

Speeding Up the Search in the Topmost Level. Let us assume that we have a
distance table that contains for any node pair s,t € V] the optimal distance
dr(s,t). Such a table can be precomputed during the preprocessing phase by
|[V/] SSSP searches in V. Using the distance table, we do not have to search
in level L. Instead, when we arrive at a node u € V/ that ‘leads’ to level L, we
add u to aset T or T depending on the search direction; we do not relax the
edge that leads to level L. After the sets T and T have been determined, we
consider all pairs (u,v),u € 7, v E 7, and compute the minimum path length
D := do(s,u) + dr(u,v) + do(v,t). Then, the length of the shortest s-t-path is
the minimum of D and the length of the tentative shortest path found so far
(in case that the search scopes have already met in a level < L). This optimi-
sation can be included in the highway query algorithm (Fig. ) by adding two
lines:

between Lines 5 and 6: - -

ba if gap’ # oo Al(u) = L then {1:=] U{u}; continue;}
between Lines 9 and 10: -

9a if gap #oco Al =LAL>{(u) then {T:=T U{u}; continue;}
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7 Experiments

Environment and Instances. The experiments were done on one core of an AMD
Opteron Processor 270 clocked at 2.0 GHz with 4 GB main memory and 2 X
1 MB L2 cache, running SuSE Linux 10.0 (kernel 2.6.13). The program was
compiled by the GNU C++ compiler 4.0.2 using optimisation level 3. We use 32
bits to store edge weights and path lengths.

We deal with the road networks of Western Europed and of the USA (without
Hawaii) and Canada. Both networks have been made available for scientific use
by the company PTV AG. The original graphs contain for each edge a length and
a road category, e.g., motorway, national road, regional road, urban street. We
assign average speeds to the road categories, compute for each edge the average
travel time, and use it as weight. In order to compare ourselves with [I[6], we
also perform experiments on another version of the US road network (without
Alaska and Hawaii) that was obtained from the TIGER/Line Files [7]. However,
in contrast to the PTV data, the TIGER graph is undirected, planarised and
distinguishes only between four road categories.

As in [1L[6], we report only the times needed to compute the shortest path
distance between two nodes without outputting the actual route. In order to
obtain the corresponding subpaths in the original graph, we are able to extract
the used shortcuts without using any extra data. However, if a fast output routine
is required, we might want to spend some additional space to accelerate the
unpacking process. For details, we refer to the full paper. Table [l summarises
the properties of the used road networks and key results of the experiments.

Parameters. Unless otherwise stated, the following default settings apply. We
use the contraction rate ¢ = 1.5 and the neighbourhood sizes H as stated in
Tab.[Ilthe same neighbourhood size is used for all levels of a hierarchy. First, we
contract the original graph. Then, we perform four iterations of our construction
procedure, which determines a highway network and its core. Finally, we compute
the distance table between all level-4 core nodes.

In one test series (Fig. ), we used all the default settings except for the
neighbourhood size H, which we varied from 40 to 90. On the one hand, if H is
too small, the shrinking of the highway networks is less effective so that the level-
4 core is still quite big. Hence, we need much time and space to precompute and
store the distance table. On the other hand, if H gets bigger, the time needed
to preprocess the lower levels increases because the area covered by the local
searches depends on the neighbourhood size. Furthermore, during a query, it
takes longer to leave the lower levels in order to get to the topmost level where
the distance table can be used. Thus, the query time increases as well. We
observe that we get good space-time tradeoffs for neighbourhood sizes around
60. In particular, we find that a good choice of the parameter H does not vary
very much from graph to graph.

In another test series (Tab.[Zh), we did not use a distance table, but repeated
the construction process until the topmost level was empty or the hierarchy

3 14 countries: at, be, ch, de, dk, es, fr, it, lu, nl, no, pt, se, uk.
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Table 1. Overview of the used road networks and key results. ‘@overhead/node’ ac-
counts for the additional memory that is needed by our highway hierarchy approach
(divided by the number of nodes). The amount of memory needed to store the original
graph is not included. Query times are average values based on 10 000 random s-t-
queries. ‘Speedup’ refers to a comparison with DIJKSTRA’s algorithm (unidirectional).
Worst case is an upper bound for any possible query in the respective graph.

Europe USA/CAN  USA (Tiger)

#nodes 18 029 721 18 741 705 24 278 285

INPUT #directed edges 42 199 587 47 244 849 58 213 192
#road categories 13 13 4

PARAM. average speeds [km/h] 10-130 16-112 40-100
50 60 60

PREPROC CPU time [min] 15 20 18
‘ @overhead /node [byte] 68 69 50

CPU time [ms] 0.76 0.90 0.88

#settled nodes 884 951 1076

QUERY #relaxed edges 3182 3630 4 638
speedup (CPU time) 8 320 7232 7 642

speedup (#settled nodes) 10 196 9 840 11 080

worst case (#settled nodes) 8 543 3 561 5141

consisted of 15 levels. We varied the contraction rate ¢ from 0.5 to 2. In case
of ¢ = 0.5 (and H = 50), the shrinking of the highway networks does not work
properly so that the topmost level is still very big. This yields huge query times.
Note that in [1] we used a larger neighbourhood size to cope with this problem.
Choosing larger contraction rates reduces the preprocessing and query times
since the cores and search spaces get smaller. However, the memory usage and
the average degree are increased since more shortcuts are introduced. Adding
too many shortcuts (¢ = 2) further reduces the search space, but the number of
relaxed edges increases so that the query times get worse.

| 41 2 + Europe ——
z 2! X\ 5120 [ USACAN - | 44
g22 % X" Z100 g 1
= 21 X g o
220 T 80 E o9
[7] (4]
219 < g
5 S 60 0.8
S 18 3 5
017 >
< 40 0.7
% 16 g

2 [
15 = 20 0.6
40 50 60 70 80 90 40 50 60 70 80 90 40 50 60 70 80 90

Fig. 2. Preprocessing and query performance depending on the neighbourhood size H
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Table 2. Preprocessing and query performance for the European road network de-
pending on the contraction rate ¢ (a) and the number of levels (b). ‘overhead’ denotes
the average memory overhead per node in bytes.

contr. PREPROCESSING QUERY PREPROC. QUERY
rate ¢ time over- odeg time #settled #relaxed # | time over-|time #settled
[min] head [ms]  nodes edges levels|[min] head|[ms] nodes
0.5 89 27  3.2(176.05 242 156 505 086 5 16 68|0.77 884
1 16 27 3.7 197 2 321 8 931 7 13 28]1.19 1 290
1.5 13 27 38| 1.58 1704 7935 9 13 27|1.51 1574
2 13 28 39| 1.70 1 681 8 607 11 13 27|1.62 1694

(a) (b)

In a third test series (Tab. 2b), we used the default settings except for the
number of levels, which we varied from 5 to 11. In each test case, a distance
table was used in the topmost level. The construction of the higher levels of
the hierarchy is very fast and has no significant effect on the preprocessing
times. In contrast, using only five levels yields a rather large distance table,
which somewhat slows down the preprocessing and increases the memory usage.
However, in terms of query times, ‘5 levels’ is the optimal choice since using the
distance table is faster than continuing the search in higher levels.

Space Saving. If we omit the first contraction step and use a smaller contraction
rate (~ less shortcuts), use a bigger neighbourhood size (~ higher levels get
smaller), and construct more levels before the distance table is used (~ smaller
distance table), the memory usage can be reduced considerably. In case of Eu-
rope, using seven levels, H = 100, and ¢ = 1 yields an average overhead per
node of 17 bytes. The construction and query times increase to 55 min and 1.38
ms, respectively.

Worst Case Upper Bounds. By executing a query from each node of a given
graph to an added isolated dummy node and a query from the dummy node to
each actual node in the backward graph, we obtain a distribution of the search
spaces of the forward and backward search, respectively. We can combine both
distributions to get an upper bound for the distribution of the search spaces
of bidirectional queries: when F_,(z) (F—(x)) denotes the number of source
(target) nodes whose search space consists of # nodes in a forward (backward)
search, we define Fo.(2) :== > . _ F.(z) - F(y), i.e,, Fu(2) is the number
of s-t-pairs such that the upper bound of the search space size of a query from
s to t is z. In particular, we obtain the upper bound max{z | F..(z) > 0} for
the worst case without performing all n? possible queries. Figure Bl visualises the
distribution F..(z) as a histogram.

For the European road network, we observe several outliers between 7 800 and
8 600. The investigation of some samples indicates that these outliers are situated
on some islands next to the Norwegian coast. Since Norway is sparsely populated
and the road network is very sparse as well, we know that the neighbourhoods in
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Fig. 3. Histogram of upper bounds for the search spaces of s-t-queries. To increase
readability, only the outline of the histogram is plotted instead of the complete
boxes.

low levels, which are defined by a fixed number of road junctions, cover a large
geographic area. Hence, the search spreads very far before entering a reasonably
high search level. When several densely populated areas are encountered while
the search level is still quite low, the total search space size gets comparatively
large. To improve the worst case, it might be a good idea to introduce adaptive
neighbourhood sizes instead of fixed ones so that the above mentioned effect can
be avoided.

In a similar way, we obtained a distribution of the number of entries in the
distance table that have to be accessed during an s-t-query. While the average
values are reasonably small (2 874 in case of Europe), the worst case can get
quite large (62 250). For example, accessing 62 250 entries in a table of size
13 465 x 13 465 takes about 1 ms, where 13 465 is the size of the level-4 core
of the European highway hierarchy. Hence, in some cases the time needed to
determine the optimal entry in the distance table might dominate the query
time. We could try to improve the worst case by introducing a case distinction
that checks whether the number of entries that have to be considered exceeds a
certain threshold. If so, we would not use the distance table, but continue with
the normal search process. However, this measure would have only little effect
on the average performance.

Comparisons. In Tab. 3 we compare several variants of our HH algorithm with
the REAL algorithm, which is the method from [6] that features the best query
times. Experimental results for the USA (Tiger) graph are taken from [6]. Results
for the European graph have been provided by Andrew GoldbergH

4 These latter results have to viewed as tentative since the networks of Europe and
North America are different (long distance ferries,...) and this was the very first
attempt to run REAL on the European network. It is likely that future versions of
REAL will yield better results.
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Table 3. Comparison between the REAL algorithm [6] and our highway hierarchies.
In addition to the current version of the highway hierarchies with the default settings
(HH), we provide results that have been obtained using settings that reduce the memory
usage (HH mem). Furthermore, we give old values (HH old) from [I]. Note that the
disk space includes the memory that is needed to store the original graph.

Europe USA (Tiger)

PREPROCESSING QUERY PREPROCESSING QUERY
method |time disk space|time #settled|time disk space|time #settled

[min] [MB] |[ms] nodes |[min] [MB] |[ms] nodes
HH old 161 892| 7.4 4065| 255 1171(7.04 3912
REAL |1 625 1746| 2.8 1867 459 2392 |1.84 891
HH 15 1570| 0.8 884 | 18 1 686 (0.88 1076
HH mem| 55 692 1.4 1976 65 919|1.60 2217

Note that the CPU times cannot be compared directly since the implementa-
tion of the REAL algorithm was executed on an AMD Opteron running at 2.4
GHz, while our machine only runs at 2.0 GHz. We also have to be careful when
we compare the memory usage. In [6] a translation table is created that can be
used to unpack shortcuts. We have subtracted the size of the translation tables
from the disk spaces used by the REAL algorithm in order to account for the
fact that our numbers do not include space for such a table.

Compared to the old highway hierarchies we see big improvements. An order of
magnitude reduction in both preprocessing and query time. The main difference
between HH and REAL is the dramatically smaller preprocessing time of HH.
We see a factor 26 for the USA and a factor 108 for Europe. HH queries are also
significantly faster than REAL. Only for the Tiger graph, REAL has a smaller
search space. All variants of HH need less space than REAL. The main reason
is the overhead for storing distances to landmarks.

8 Discussion

Highway hierarchies are a simple, robust and space efficient concept that al-
lows very efficient fastest path queries even in huge realistic road networks. No
other technique has reported such short query times although highway hierar-
chies have not yet been combined with goal directed search and although none
of the previous techniques is competitive w.r.t. preprocessing time. Real-world
applications suggest a number of additional challenging problems: How to handle
mobile devices with limited fast memory? How to update or patch the hierarchy
when edge weights change, e.g. due to traffic jams? What about multiple objec-
tive functions or time dependent edge weights? We are optimistic that several
of these problems can be solved, in particular because plain highway hierarchies
are so fast that even a 100 fold slow-down w.r.t. query time or preprocessing
time would be acceptable in some situations.
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