

# **Engineering Highway Hierarchies**

#### Peter SandersDominik Schultes

Institut für Theoretische Informatik – Algorithmik II Universität Karlsruhe (TH)

http://algo2.iti.uka.de/schultes/hwy/

Zürich, September 11, 2006

# **Route Planning**

#### **Goals:**

exact shortest (i.e. fastest) paths in large road networks

☐ fast queries

- fast preprocessing
  - Iow space consumption

#### **Applications:**

- □ route planning systems in the internet
  - car navigation systems





#### • • •

# **Our Approach: Highway Hierarchies**<sup>1</sup>

complete search within a local area

search in a (thinner) highway network

= minimal graph that preserves all shortest paths

contract network, e.g.,

iterate  $\rightsquigarrow$  highway hierarchy









choose neighbourhood radius r(s)

(by a heuristic)

define neighbourhood of *s* 

$$\mathcal{N}(s) := \{ v \in V \mid d(s, v) \le r(s) \}$$



Edge (u, v) belongs to highway network *iff* there are nodes *s* and *t* s.t.

 $\Box$  (*u*,*v*) is on the "*canonical*" shortest path from *s* to *t* and

$$\Box$$
 (*u*,*v*) is not entirely within  $\mathcal{N}(s)$  or  $\mathcal{N}(t)$ 

5



## Improvements

- Iocal area definition more flexible
- **support** of directed graphs
- simpler, yet more general and more effective contraction
- **simpler** query algorithm
- faster preprocessing, faster queries, less memory usage
- per-instance worst case performance guarantees































Which nodes should be **bypassed**?

Use some heuristic taking into account

the number of shortcuts that would be created and

the degree of the node.





Bidirectional version of DIJKSTRA's algorithm

+ restrictions on the edges that are relaxed

+ a very simple abort criterion

search space size increases<sup>2</sup> by  $\approx$  50% running time decreases<sup>2</sup> by  $\approx$  50%

<sup>&</sup>lt;sup>2</sup>compared to ESA 2005



### **Distance Table: Construction**

Construct fewer levels.

e.g. 4 instead of 9

Compute an all-pairs distance table for the core of the topmost level L.

13 465  $\times$  13 465 entries



# **Distance Table: Query**



Abort the search when all entrance points in the core of level L have been encountered.  $\approx$  55 for each direction

Use the distance table to bridge the gap.

pprox 55 imes 55 entries



#### **Distance Table: Search Space Example**









Worst Case for Europe: 2 737 settled nodes (< 0.016% of all nodes)

<sup>&</sup>lt;sup>4</sup>using a new feature that limits the maximum shortcut length





exact routes in large road networks (directed!) 18 million nodes fast search 0.76 ms ~ cheap, energy efficient processors in mobile devices  $\rightsquigarrow$  low server load ~> lots of room for additional functionality per-instance worst case guarantees search space  $\leq$  2 737 fast preprocessing 15 min Iow space consumption 17-68 bytes/node

19

# Work in Progress

20

combination with a goal directed approach (landmarks)

joint work with [D. Delling, D. Wagner]<sup>5</sup>

computation of  $M \times N$  distance tables

(e.g.  $10000 \times 10000$  table in one minute)

joint work with [S. Knopp, F. Schulz, D. Wagner]<sup>5,6</sup>

storing all entrance points into the core of the topmost level  $\rightarrow very$  fast queries (<  $20 \mu s$ )

joint work with [H. Bast, S. Funke, D. Matijevic]<sup>7</sup>

<sup>5</sup>Universität Karlsruhe, Algorithmik I

<sup>6</sup>PTV AG, Karlsruhe

<sup>&</sup>lt;sup>7</sup>Max-Planck-Institut für Informatik, Saarbrücken

**Future Work** 

fast, local updates on the highway network

(e.g. for traffic jams)

implementation for mobile devices(flash access, ...)

multi-criteria shortest paths

joint work with [M. Müller-Hannemann, M. Schnee]<sup>8</sup>







<sup>&</sup>lt;sup>8</sup>Technische Universität Darmstadt