Engineering Highway Hierarchies

Peter Sanders Dominik Schultes

Institut für Theoretische Informatik - Algorithmik II
Universität Karlsruhe (TH)
http://algo2.iti.uka.de/schultes/hwy/

Zürich, September 11, 2006

Route Planning

Goals:

exact shortest (i.e. fastest) paths in large road networksfast queriesfast preprocessingIow space consumption
Applications:

\square route planning systems in the internetcar navigation systems
\square ...

Our Approach: Highway Hierarchies ${ }^{1}$

\square complete search within a local areasearch in a (thinner) highway network

$=$ minimal graph that preserves all shortest paths
\square contract network, e.g.,

\square iterate \rightsquigarrow highway hierarchy

[^0]
Local Area

\square choose neighbourhood radius $r(s)$ (by a heuristic)
\square define neighbourhood of s

$$
\mathfrak{N}(s):=\{v \in V \mid d(s, v) \leq r(s)\}
$$

Highway Network

Edge (u, v) belongs to highway network iff there are nodes s and t s.t.
$\square(u, v)$ is on the "canonical" shortest path from s to t and
$\square(u, v)$ is not entirely within $\mathfrak{N}(s)$ or $\mathfrak{N}(t)$

Improvements

\square local area definition more flexible
\square support of directed graphs
\square simpler, yet more general and more effective contraction
\square simpler query algorithm
\square faster preprocessing, faster queries, less memory usage
\square per-instance worst case performance guarantees

Sanders/Schultes: Highway Hierarchies
Contraction

Sanders/Schultes: Highway Hierarchies

Contraction

Sanders/Schultes: Highway Hierarchies

Contraction

Contraction

Contraction

Contraction

Which nodes should be bypassed?

Use some heuristic taking into account
\square the number of shortcuts that would be created and
\square the degree of the node.

Query

Bidirectional version of DIJKSTRA's algorithm

+ restrictions on the edges that are relaxed
+ a very simple abort criterion

> search space size increases ${ }^{2}$ by $\approx 50 \%$ running time decreases ${ }^{2}$ by $\approx 50 \%$

[^1]
Distance Table: Construction

\square Construct fewer levels.
e.g. 4 instead of 9
\square Compute an all-pairs distance table for the core of the topmost level L.
13465×13465 entries

Distance Table: Query

\square Abort the search when all entrance points in the core of level L have been encountered. ≈ 55 for each direction
\square Use the distance table to bridge the gap. $\approx 55 \times 55$ entries

Distance Table: Search Space Example

Sanders/Schultes: Highway Hierarchies

Worst Case Costs ${ }^{4}$

Worst Case for Europe: 2737 settled nodes ($<0.016 \%$ of all nodes)

[^2]
Summary

\square exact routes in large road networks (directed!)
18 million nodes
\square fast search
0.76 ms
\rightsquigarrow cheap, energy efficient processors in mobile devices
\rightsquigarrow low server load
\rightsquigarrow lots of room for additional functionality
\square per-instance worst case guarantees search space ≤ 2737
\square fast preprocessing
15 min
\square low space consumption
17-68 bytes/node

Work in Progress

\square combination with a goal directed approach (landmarks)
joint work with [D. Delling, D. Wagner] ${ }^{5}$
\square computation of $M \times N$ distance tables
(e.g. 10000×10000 table in one minute)
joint work with [S. Knopp, F. Schulz, D. Wagner] ${ }^{5,6}$
\square storing all entrance points into the core of the topmost level
\rightsquigarrow very fast queries ($<20 \mu \mathrm{~s}$)
joint work with [H. Bast, S. Funke, D. Matijevic] ${ }^{7}$
${ }^{5}$ Universität Karlsruhe, Algorithmik I
${ }^{6}$ PTV AG, Karlsruhe
${ }^{7}$ Max-Planck-Institut für Informatik, Saarbrücken

Future Work

fast, local updates on the highway network (e.g. for traffic jams)implementation for mobile devices (flash access, ...)multi-criteria shortest paths
joint work with [M. Müller-Hannemann, M. Schnee] ${ }^{8}$
\square . . .

[^3]
[^0]: ${ }^{1}$ presented at ESA 2005

[^1]: ${ }^{2}$ compared to ESA 2005

[^2]: ${ }^{4}$ using a new feature that limits the maximum shortcut length

[^3]: ${ }^{8}$ Technische Universität Darmstadt

