

Route Planning in Road Networks

- simple, flexible, efficient -

Peter Sanders <u>Dominik Schultes</u>

Institut für Theoretische Informatik – Algorithmik II Universität Karlsruhe (TH)

http://algo2.iti.uka.de/schultes/hwy/

Göteborg, December 20, 2007

Applications:

□ route planning systems in the internet, car navigation systems,

traffic simulation, logistics optimisation

DIJKSTRA's Algorithm

the classic solution [1959]

 $O(n \log n + m)$ (with Fibonacci heaps)

not practicable

for large graphs

(e.g. European road network:

pprox 18 000 000 nodes)

improves the running time, but still too slow

Speedup Techniques

4

that are <mark>faster</mark> than	Dijkstra's	algorithm
-----------------------------------	------------	-----------

require additional data

(e.g., node coordinates)

not always available!

AND / OR

preprocess the graph and generate auxiliary data (e.g., 'signposts') can take a lot of time; assume many queries;

assume static graph or require update operations!

AND / OR

exploit special properties of the network (e.g., planar, hierarchical) fail when the given graph has not the desired properties!

→ not a solution for general graphs,

but can be very efficient for many practically relevant cases

5

require additional data

(e.g., node coordinates)

AND / OR

preprocess the graph and generate auxiliary data (e.g., 'signposts')

AND / OR

exploit special properties of the network (e.g., planar, hierarchical)

☐ fast queries

- accurate results
- **scale invariant** / support all types of queries
- ☐ fast preprocessing / deal with large networks
- □ low space consumption
- **fast update** operations

Highway Hierarchies

[ESA 05, ESA 06]

Construction: iteratively alternate between

removal of low degree nodes

removal of edges that only appear on shortest paths close to source or target

yields a hierarchy of highway networks

in a sense, classify roads / junctions by 'importance'

Highway Hierarchies

- foundation for our other methods
- directly allows point-to-point queries
- □ 13 min preprocessing
- 0.61 ms to determine the path length
- \bigcirc (0.80 ms to determine a complete path description)
- reasonable space consumption (48 bytes/node)
 - can be reduced to 17 bytes/node

joint work with D. Delling, D. Wagner

[DIMACS Challenge 06]

- combination of highway hierarchies with goal-directed search
- slightly reduced query times (0.49 ms)
- more effective

- for approximate queries or
- when a distance metric instead of a travel time metric is used

joint work with S. Knopp, F. Schulz, D. Wagner [ALENEX 07]

Given:

 \Box graph G = (V, E)

 \Box set of source nodes $S \subseteq V$

 \Box set of target nodes $T \subseteq V$

Task: compute $|S| \times |T|$ distance table containing the shortest path distances

 \Box e.g., 10000 imes 10000 table in 23 seconds

11

Many-to-Many Shortest Paths

Possible Application: Ride Sharing

Transit-Node Routing

[with H. Bast and S. Funke]

First Observation

For long-distance travel: leave current location

via one of only a few 'important' traffic junctions, called access points

(\rightsquigarrow we can afford to store all access points for each node)

[in Europe: about 10 access points per node on average]

Second Observation

Each access point is relevant for several nodes. \rightsquigarrow

union of the access points of all nodes is small, called transit-node set

(\rightsquigarrow we can afford to store the distances between all transit node pairs)

[in Europe: about 10 000 transit nodes]

Transit-Node Routing

Preprocessing:

- \Box identify transit-node set $\mathcal{T} \subseteq V$
- \Box compute complete $|\mathcal{T}| \times |\mathcal{T}|$ distance table
- □ for each node: identify its access points (mapping $A: V \to 2^T$), store the distances

Query (source *s* and target *t* given): compute

 $d_{top}(s,t) := \min \{ d(s,u) + d(u,v) + d(v,t) : u \in A(s), v \in A(t) \}$

Transit-Node Routing

Locality Filter:

local cases must be filtered (~> special treatment)

 $L: V \times V \rightarrow \{ \mathsf{true}, \mathsf{false} \}$

 $\neg L(s,t)$ implies $d(s,t) = d_{top}(s,t)$

Experimental Results

38

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

very fast queries

(down to $4 \mu s$, > 1 000 000 times faster than DIJKSTRA)

more preprocessing time (1:15 h) and space (247 bytes/node) needed

winner of the 9th DIMACS Implementation Challenge 2006

Scientific American 50 Award 2007

5 39

- How to determine the transit nodes?
- How to determine the access points efficiently?
- ☐ How to determine the locality filter?
- How to handle local queries?

Open Questions

- ☐ How to determine the transit nodes?
- How to determine the access points efficiently?
- ☐ How to determine the locality filter?
- ☐ How to handle local queries?

Answer:

Use other route planning techniques!

Outline

42

1. basic concepts: overlay graphs, covering nodes

2. lightweight, efficient static approach

3. dynamic version

1. Basic Concepts

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]

- \Box graph G = (V, E) is given
 - select node subset $S \subseteq V$

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]

- \Box graph G = (V, E) is given
 - \Box select node subset $S \subseteq V$

 \Box overlay graph G' := (S, E')

determine edge set E' s.t. shortest path distances are preserved

Minimal Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]

- \Box graph G = (V, E) is given
 -] select node subset $S \subseteq V$

 \Box minimal overlay graph G' := (S, E') where

 $E' := \{(s,t) \in S \times S \mid \text{no inner node of the shortest } s \text{-}t \text{-path belongs to } S\}$

Covering Nodes

Definitions:

 \Box covered branch: contains a node from S

covered tree: all branches covered

 \Box covering nodes: on each branch, the node $u \in S$ closest to the root s

bidirectional

 \Box perform search in G till search trees are covered by nodes in S

 \Box perform search in G till search trees are covered by nodes in S

 \Box continue search only in G'

49

Overlay Graph: Construction

for each node $u \in S$

- \Box perform a local search from u in G
 - determine the covering nodes
- \Box add an edge (u, v) to E' for each covering node v

Conservative Approach:

 \Box stop searching in G when all branches are covered

☐ can be very inefficient

Aggressive Approach:

 \Box do not continue the search in G on covered branches

Covering Nodes

Compromise:

- introduce parameter *p*
- do not continue the search in G on branches that already contain p nodes from S
- in addition: stop when all branches are covered
- $\square p = 1 \rightarrow \text{aggressive}$
- $\square p = \infty \rightarrow \text{conservative}$

works very well in practice

Reminder: Highway Hierarchies

- previous static route-planning approach
- determines a hierarchical representation of nodes and edges

[SS05-06]

2. Static Highway-Node Routing

Static Highway-Node Routing

- extend ideas from
 - multi-level overlay graphs
 - highway hierarchies
 - transit node routing

[HolzerSchulzWagnerWeiheZaroliagis00-07]

[SS05-06]

[BastFunkeMatijevicSS06-07]

use highway hierarchies to classify nodes by 'importance'

i.e., select node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots \supseteq S_L$

(crucial distinction from previous separator-based approach)

construct multi-level overlay graph

 $G_0 = G = (V, E), G_1 = (S_1, E_1), G_2 = (S_2, E_2), \dots, G_L = (S_L, E_L)$

(just iteratively construct overlay graphs)

Static Highway-Node Routing

extend ideas from

- multi-level overlay graphs[HolzerSchulzWagnerWeiheZaroliagis00-07]- highway hierarchies[SS05-06]- transit node routing[BastFunkeMatijevicSS06-07]use highway hierarchies to classify nodes by 'importance'i.e., select node sets $S_1 \supseteq S_2 \supseteq S_3 \dots \supseteq S_L$ 13 min(crucial distinction from previous separator-based approach)

construct multi-level overlay graph 2 min $G_0 = G = (V, E), G_1 = (S_1, E_1), G_2 = (S_2, E_2), \dots, G_L = (S_L, E_L)$ (just iteratively construct overlay graphs)

(experiments with a European road network with \approx 18 million nodes)

Query: Aggressive Variant

 $\Box \text{ node level } \ell(u) := \max \left\{ \ell \mid u \in S_{\ell} \right\}$

☐ forward search graph
$$\overrightarrow{\mathcal{G}} := \left(V, \left\{(u, v) \mid (u, v) \in \bigcup_{i=\ell(u)}^{L} E_i\right\}\right)$$

☐ backward search graph $\overleftarrow{\mathcal{G}} := \left(V, \left\{(u, v) \mid (v, u) \in \bigcup_{i=\ell(u)}^{L} E_i\right\}\right)$

 \Box perform one plain Dijkstra search in $\overrightarrow{\mathcal{G}}$ and one in $\overleftarrow{\mathcal{G}}$

Proof of Correctness

Level 2

Level 1

shortest path from *s* to *t* in $G = G_0$

overlay graph G_1 preserves distance from $s_1 \in S_1$ to $t_1 \in S_1$

Proof of Correctness

overlay graph G_2 preserves distance from $s_2 \in S_2$ to $t_2 \in S_2$

Proof of Correctness

$$\overrightarrow{\mathcal{G}} := \left(V, \left\{ (u, v) \mid (u, v) \in \bigcup_{i=\ell(u)}^{L} E_i \right\} \right)$$

$$\overleftarrow{\mathcal{G}} := \left(V, \left\{ (u, v) \mid (v, u) \in \bigcup_{i=\ell(u)}^{L} E_i \right\} \right)$$

Stall-on-Demand

63

- a node v can 'wake' an already settled node u
- $\exists u \operatorname{can} \operatorname{'stall'} v$

$$(\text{if } \delta(u) + w(u, v) < \delta(v))$$

i.e., search is not continued from $\boldsymbol{\nu}$

stalling can propagate to adjacent nodes

does not invalidate correctness (only suboptimal paths are stalled)

Stall-on-Demand

```
const NodeID index = isReached(searchID, v);
if (edge.isDirected(1-dir) && index) {
  const POData& data = pgData(searchID, index);
  EdgeWeight vKey = data.stalled() ? data.stallKey() : pqKey(searchID,index);
  if (vKey + edge.weight() < parentDist) {</pre>
    pqData(searchID, parent.index).stallKey(vKey + edge.weight());
    queue< pair<NodeID, EdgeWeight> > _stallQueue;
    _stallQueue.push(pair<NodeID,EdgeWeight>(parent.nodeID,vKey+edge.weight()));
    while (! stallOueue.empty()) {
      u = _stallQueue.front().first;
      key = _stallQueue.front().second;
      _stallQueue.pop();
      for (EdgeID e = graph->firstEdge(u); e < graph->lastEdge(u); e++) {
        const Edge& edge = _graph->edge(e);
        if (! edge.isDirected(searchID)) continue;
        NodeID index = isReached(searchID, edge.target());
        if (index) {
          const EdgeWeight newKey = key + edge.weight();
          if (newKey < pqKey(searchID, index)) {</pre>
            PQData& data = pqData(searchID, index);
            if (! data.stalled()) {
              data.stallKey(newKey);
              __stallQueue.push(pair<NodeID,EdgeWeight>(edge.target(), newKey));
    \left\{ \right\}
    return;
} }
```


Local Queries

Per-Instance Worst-Case Guarantee

max = 2148 nodes

Memory Consumption / Query Time

different trade-offs between memory consumption and query time

for example:

□ 9.5 bytes per node overhead \rightarrow 0.89 ms store complete multi-level overlay graph

0.7 bytes per node overhead \rightarrow 1.44 ms store only forward and backward search graph \overrightarrow{G} and \overleftarrow{G} $(\overrightarrow{G}$ and \overleftarrow{G} are independent of *s* and *t*)

numbers refer to the Western European road network with 18 million nodes

3. Dynamic Highway-Node Routing

79

change entire cost function

(e.g., use different speed profile)

change a few edge weights

(e.g., due to a traffic jam)

Constancy of Structure

Assumption:

structure of road network does not change

(no new roads, road removal = set weight to ∞)

 \rightsquigarrow not a significant restriction

 classification of nodes by 'importance' might be slightly perturbed, but not completely changed

(e.g., a sports car and a truck both prefer motorways)

→ performance of our approach relies on that

(not the correctness)

Dynamic Highway-Node Routing

change entire cost function

 \Box keep the node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots$

recompute the overlay graphs

speed profile	default	fast car	slow car	slow truck	distance
constr. [min]	1:40	1:41	1:39	1:36	3:56
query [ms]	1.17	1.20	1.28	1.50	35.62
#settled nodes	1 4 1 4	1 444	1 507	1 667	7 057

change a few edge weights

- server scenario: if something changes,
 - update the preprocessed data structures
 - answer many subsequent queries very fast
- mobile scenario: if something changes,
 - it does not pay to update the data structures
 - perform single 'prudent' query that takes changed situation into account

Dynamic Highway-Node Routing

change a few edge weights, server scenario

 \Box keep the node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots$

recompute only possibly affected parts of the overlay graphs

- the computation of the level- ℓ overlay graph consists of $|S_{\ell}|$ local searches to determine the respective covering nodes
- if the initial local search from $v \in S_{\ell}$ has not touched a now modified edge (u, x), that local search need not be repeated
- we manage sets $A_u^{\ell} = \{v \in S_{\ell} \mid v$'s level- ℓ preprocessing might be affected when an edge (u, x) changes $\}$

Road Type

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

- 1. keep the node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots$
- 2. keep the overlay graphs
- 3. C :=all changed edges
- 4. use the sets A_u^{ℓ} (considering edges in *C*) to determine for each node *v* a reliable level r(v)
- 5. during a query, at node v

 \Box do not use edges that have been created in some level > r(v)

instead, downgrade the search to level r(v) (forward search only)

reliable levels: r(x) = 0, $r(s_2) = r(t_2) = 1$

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

iterative variant (provided that only edge weight increases allowed)

- 1. keep everything (as before)
- 2. *C* := **∅**
- 3. use the sets A_u^{ℓ} (considering edges in *C*) to determine for each node *v* a reliable level r(v) (as before)
- 4. 'prudent' query (as before)
- 5. if shortest path P does not contain a changed edge, we are done
- 6. otherwise: add changed edges on P to C, repeat from 3.

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

	_	single pass	iterative		
change set	affected	query time	query time	#itera	ations
(motorway edges)	queries	[ms]	[ms]	avg	max
1	0.4 %	2.3	1.5	1.0	2
10	5.8%	8.5	1.7	1.1	3
100	40.0 %	47.1	3.6	1.4	5
1 000	83.7 %	246.3	25.3	2.7	9

Unidirectional Queries

- 1. keep everything (as before)
- 2. $C := \{ \text{ some edge } (t, x) \}$
- 3. use the sets A_u^{ℓ} (considering edges in *C*) to determine for each node *v* a reliable level r(v) (as before)
- 4. 'prudent' query (as before)

reliable levels: $r(t_1) = 0$, $r(t_2) = 1$

efficient static approach

- fast preprocessing / fast queries
- outstandingly low memory requirements
 0.7 bytes/node \low 1.4 ms

can handle practically relevant dynamic scenarios

- change entire cost function
- change a few edge weights
 - * update data structures
 - OR
 - * iteratively bypass traffic jams e.g., 3.6 ms in case of 100 traffic jams

numbers refer to the Western European road network with 18 million nodes and

92

2-40 ms per changed edge

typically < 2 minutes

 $15 \min / 0.9 \, \mathrm{ms}$

Work in Progress

find simpler / better ways to determine the node sets

 $S_1 \supseteq S_2 \supseteq S_3 \dots$

parallelise the preprocessing

implementation for a mobile device

Future Work

94

handle a massive amount of updates

deal with time-dependent scenarios

(where edge weights depend on the time of day)

allow multi-criteria optimisations

Commercial Usage

95

no patents (applies to everything in this talk)

several publications

(http://algo2.iti.uka.de/schultes/hwy/)

→ you can implement everything without asking for permission

(but please tell us)

Industrial Cooperations

we go for non-exclusive cooperations,

various types come into question, e.g.:

University			Company
informal	ideas		requirements, data
contract	implementation		money
contract	man-power	$ ightarrow$ joint project \leftarrow	man-power