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?

Route Planning
Task:
In a given road network, determine an optimal route

from a given source

to a given target

Applications:

� route planning systems in the internet, car navigation systems,

� traffic simulation, logistics optimisation
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DIJKSTRA ’s Algorithm

the classic solution[1959]

O(nlogn+m) (with Fibonacci heaps)

ts
Dijkstra

ts
bidirectional
Dijkstra

not practicable

for large graphs

(e.g. European road network:

≈ 18 000 000 nodes)

improves the running time,

but still too slow
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Speedup Techniques

that are faster than Dijkstra’s algorithm

� require additional data (e.g., node coordinates)

not always available!

AND / OR

� preprocess the graph and generate auxiliary data (e.g., ‘signposts’)

can take a lot of time; assume many queries;

assume static graph or require update operations!

AND / OR

� exploit special properties of the network (e.g., planar, hierarchical)

fail when the given graph has not the desired properties!

 not a solution for general graphs,

but can be very efficient for many practically relevant cases
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Goals

� fast queries

� accurate results

� scale invariant / support all types of queries

� fast preprocessing / deal with large networks

� low space consumption

� fast update operations

� simple
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Overview

Many−to−Many
compute distance tables

[ALENEX 07]

[DIMACS 06]

HH Star
goal−directed

foundation
Highway Hierarchies

[ESA 05, ESA 06]

Hwy−Node Routing
allow edge weight changes

[WEA 07]

[DIMACS 06, ALENEX 07,
Science 07]

very fast queries
Transit Node Routing
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Highway Hierarchies
[ESA 05, ESA 06]

Construction: iteratively alternate between

� removal of low degree nodes

� removal of edges that only appear

on shortest paths close to source

or target

yields a hierarchy of highway networks

in a sense, classify roads / junctions by ‘importance’
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Highway Hierarchies

� foundation for our other methods

� directly allows point-to-point queries

� 13 min preprocessing

� 0.61 ms to determine the path length

� (0.80 ms to determine a complete path description)

� reasonable space consumption (48 bytes/node)

can be reduced to 17 bytes/node

ts
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Highway Hierarchies Star

joint work with D. Delling, D. Wagner [DIMACS Challenge 06]

� combination of highway hierarchies with goal-directed search

� slightly reduced query times (0.49 ms)

� more effective

– for approximate queries or

– when a distance metric instead of a travel time metric is used
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Many-to-Many Shortest Paths

joint work with S. Knopp, F. Schulz, D. Wagner

[ALENEX 07]

Given:

� graph G = (V,E)

� set of source nodes S⊆V

� set of target nodes T ⊆V

Task: compute |S|× |T| distance table

containing the shortest path distances

� e.g., 10 000× 10 000 table in 23 seconds
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Many-to-Many Shortest Paths

Possible Application:Ride Sharing

Distance Table 1

Distance Table 2
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Transit-Node Routing

[with H. Bast and S. Funke]

s t
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X XX X
Example:
Karlsruhe→ Copenhagen
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X XX X
Example:
Karlsruhe→ Berlin
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X XX X
Example:
Karlsruhe→ Vienna
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X XX X
Example:
Karlsruhe→ Munich
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X XX X
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X XX X
Example:
Karlsruhe→ Brussels
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First Observation

For long-distancetravel: leave current location

via one of only a few ‘important’ traffic junctions,

called access points

( we can afford to store all access points for each node)

[in Europe: about 10 access points per node on average]
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X XX X
Example:
Karlsruhe→ Berlin



Sanders/Schultes: Route Planning 32

X XX X
Example:
Karlsruhe→ Berlin
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X XX X
Example:
Karlsruhe→ Berlin
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Second Observation

Each access point is relevant for several nodes. 

union of the access points of all nodes is small,

called transit-node set

( we can afford to store the distances between all transit node pairs)

[in Europe: about 10 000 transit nodes]
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Transit-Node Routing

Preprocessing:

� identify transit-node set T ⊆V

� compute complete |T |× |T | distance table

� for each node: identify its access points (mapping A : V→ 2T ),

store the distances

Query (source sand target t given): compute

dtop(s, t) := min{d(s,u)+d(u,v)+d(v, t) : u∈ A(s),v∈ A(t)}



Sanders/Schultes: Route Planning 36

Transit-Node Routing

Locality Filter :

local cases must be filtered ( special treatment)

L : V×V→{true, false}

¬L(s, t) implies d(s, t) = dtop(s, t)
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Example
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Experimental Results

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

� very fast queries

(down to 4 µs, > 1 000 000 times faster than DIJKSTRA)

� more preprocessing time (1:15 h) and space (247 bytes/node) needed

� winner of the 9th DIMACS Implementation Challenge 2006

� Scientific American 50 Award 2007
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Open Questions

� How to determine the transit nodes?

� How to determine the access points efficiently?

� How to determine the locality filter?

� How to handle local queries?
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Open Questions

� How to determine the transit nodes?

� How to determine the access points efficiently?

� How to determine the locality filter?

� How to handle local queries?

Answer:

� Use other route planning techniques!
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Highway-Node Routing

[SS 07–]
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Outline

1. basic concepts:overlay graphs, covering nodes

2. lightweight, efficient static approach

3. dynamic version
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1. Basic Concepts
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Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

� graph G = (V,E) is given

� select node subset S⊆V
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Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

� graph G = (V,E) is given

� select node subset S⊆V

� overlay graph G′ := (S,E′)

determine edge set E′ s.t. shortest path distances are preserved
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Minimal Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

� graph G = (V,E) is given

� select node subset S⊆V

� minimal overlay graph G′ := (S,E′) where

E′ := {(s, t) ∈ S×S| no inner node of the shortest s-t-path belongs to S}
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Covering Nodes

Definitions:

� covered branch: contains a node from S

� covered tree: all branches covered

� covering nodes: on each branch, the node u∈ Sclosest to the root s

s
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Query: Intuition

� bidirectional

� perform search in G till search trees are covered by nodes in S

s

t
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Query: Intuition

� bidirectional

� perform search in G till search trees are covered by nodes in S

� continue search only in G′

s

t
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Overlay Graph: Construction

for each node u∈ S

� perform a local search from u in G

� determine the covering nodes

� add an edge (u,v) to E′ for each covering node v

u

v

v’
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Covering Nodes

Conservative Approach:

� stop searching in G when all branches are covered

s

big city

long−distance ferry

� can be very inefficient
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Covering Nodes

Aggressive Approach:

� do not continue the search in G on covered branches

s

fast road

slow road

v

u

� can be very inefficient
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Covering Nodes

Compromise:

� introduce parameter p

� do not continue the search in G on branches that

already contain p nodes from S

� in addition: stop when all branches are covered

� p = 1→ aggressive

� p = ∞→ conservative

� works very well in practice
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Reminder: Highway Hierarchies

� previous static route-planning approach [SS05–06]

� determines a hierarchical representation of nodes and edges
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2. StaticHighway-Node
Routing

−→
G

←−
G

s t

Level 1

Level 2

Level 0

s1 t1

s2 t2
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Static Highway-Node Routing

� extend ideas from

– multi-level overlay graphs [HolzerSchulzWagnerWeiheZaroliagis00–07]

– highway hierarchies [SS05–06]

– transit node routing [BastFunkeMatijevicSS06–07]

� use highway hierarchies to classify nodes by ‘importance’

i.e., select node sets S1⊇ S2⊇ S3 . . .⊇ SL

(crucial distinction from previous separator-based approach)

� construct multi-level overlay graph

G0 = G = (V,E),G1 = (S1,E1),G2 = (S2,E2), . . . ,GL = (SL,EL)

(just iteratively construct overlay graphs)
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Static Highway-Node Routing

� extend ideas from

– multi-level overlay graphs [HolzerSchulzWagnerWeiheZaroliagis00–07]

– highway hierarchies [SS05–06]

– transit node routing [BastFunkeMatijevicSS06–07]

� use highway hierarchies to classify nodes by ‘importance’

i.e., select node sets S1⊇ S2⊇ S3 . . .⊇ SL 13 min

(crucial distinction from previous separator-based approach)

� construct multi-level overlay graph 2 min

G0 = G = (V,E),G1 = (S1,E1),G2 = (S2,E2), . . . ,GL = (SL,EL)

(just iteratively construct overlay graphs)

(experiments with a European road network with≈ 18 million nodes)
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Query: Aggressive Variant

� node level ℓ(u) := max{ℓ | u∈ Sℓ}

� forward search graph
−→
G :=

(

V,
{

(u,v) | (u,v) ∈
SL

i=ℓ(u) Ei

})

� backward search graph
←−
G :=

(

V,
{

(u,v) | (v,u) ∈
SL

i=ℓ(u) Ei

})

� perform one plain Dijkstra search in
−→
G and one in

←−
G

−→
G

←−
G

s t

Level 1

Level 2

Level 0

s1 t1

s2 t2
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Proof of Correctness

s ts1 t1

Level 1

Level 2

s2 t2 Level 0
d0(s, t)

shortest path from s to t in G = G0
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Proof of Correctness

s ts1 t1

Level 1

Level 2

s2 t2 Level 0

s1 s2 t2 t1
d1(s1, t1)

d0(s1, t1)

overlay graph G1 preserves distance from s1 ∈ S1 to t1 ∈ S1
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Proof of Correctness

s ts1 t1

Level 1

Level 2

s2 t2 Level 0

s1 s2 t2 t1

s2 t2
d2(s2, t2)

d1(s2, t2)

overlay graph G2 preserves distance from s2 ∈ S2 to t2 ∈ S2
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Proof of Correctness

−→
G

←−
G

s t

Level 1

Level 2

Level 0

s1 t1

s2 t2

−→
G :=

(

V,
{

(u,v) | (u,v) ∈
SL

i=ℓ(u) Ei

})

←−
G :=

(

V,
{

(u,v) | (v,u) ∈
SL

i=ℓ(u) Ei

})
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Stall-on-Demand

� a node v can ‘wake’ an already settled node u

� u can ‘stall’ v (if δ(u)+w(u,v) < δ(v))

i.e., search is not continued from v

s

fast road

slow road

v

u

� stalling can propagate to adjacent nodes

� does not invalidate correctness (only suboptimal paths are stalled)



Karlsruhe→
Bertinoro

NO Stall-on-Demand

search space size:
31 756



Karlsruhe→
Bertinoro

Stall-on-Demand

search space size:
1 179
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Stall-on-Demand

const NodeID index = isReached(searchID, v);

if (edge.isDirected(1-dir) && index) {

const PQData& data = pqData(searchID, index);

EdgeWeight vKey = data.stalled() ? data.stallKey() : pqKey(searchID,index);

if (vKey + edge.weight() < parentDist) {

pqData(searchID, parent.index).stallKey(vKey + edge.weight());

queue< pair<NodeID, EdgeWeight> > _stallQueue;

_stallQueue.push(pair<NodeID,EdgeWeight>(parent.nodeID,vKey+edge.weight()));

while (! _stallQueue.empty()) {

u = _stallQueue.front().first;

key = _stallQueue.front().second;

_stallQueue.pop();

for (EdgeID e = _graph->firstEdge(u); e < _graph->lastEdge(u); e++) {

const Edge& edge = _graph->edge(e);

if (! edge.isDirected(searchID)) continue;

NodeID index = isReached(searchID, edge.target());

if (index) {

const EdgeWeight newKey = key + edge.weight();

if (newKey < pqKey(searchID, index)) {

PQData& data = pqData(searchID, index);

if (! data.stalled()) {

data.stallKey(newKey);

_stallQueue.push(pair<NodeID,EdgeWeight>(edge.target(), newKey));

} } } } }

return;

} }
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Local Queries

Dijkstra Rank

Q
ue

ry
 T

im
e 

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0
1

0
1



Sanders/Schultes: Route Planning 76

Per-Instance Worst-Case Guarantee

1014

1012

1010

108

106

104

100

 0  500  1000  1500  2000

# 
s-

t-
pa

irs

Search Space Size

Europe

max = 2 148 nodes
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Memory Consumption / Query Time

different trade-offs between memory consumption and query time

for example:

� 9.5 bytes per node overhead→ 0.89 ms

store complete multi-level overlay graph

� 0.7 bytes per node overhead→ 1.44 ms

store only forward and backward search graph
−→
G and

←−
G

(
−→
G and

←−
G are independent of sand t)

numbers refer to the Western European road network with 18 million nodes
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3. Dynamic Highway-Node
Routing
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Dynamic Scenarios

� change entire cost function

(e.g., use different speed profile)

� change a few edge weights

(e.g., due to a traffic jam)
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Constancy of Structure

Assumption:

� structure of road network does not change

(no new roads, road removal = set weight to ∞)

 not a significant restriction

� classification of nodes by ‘importance’ might be slightly perturbed,

but not completely changed

(e.g., a sports car and a truck both prefer motorways)

 performance of our approach relies on that

(not the correctness)
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Dynamic Highway-Node Routing

change entirecost function

� keep the node sets S1⊇ S2⊇ S3 . . .

� recompute the overlay graphs

speed profile default fast car slow car slow truck distance

constr. [min] 1:40 1:41 1:39 1:36 3:56

query [ms] 1.17 1.20 1.28 1.50 35.62

#settled nodes 1 414 1 444 1 507 1 667 7 057
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Dynamic Highway-Node Routing

change afew edge weights

� server scenario:if something changes,

– update the preprocessed data structures

– answer many subsequent queries very fast

� mobile scenario:if something changes,

– it does not pay to update the data structures

– perform single ‘prudent’ query that

takes changed situation into account
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Dynamic Highway-Node Routing

change afew edge weights, server scenario

� keep the node sets S1⊇ S2⊇ S3 . . .

� recompute only possibly affected parts of the overlay graphs

– the computation of the level-ℓ overlay graph consists of

|Sℓ| local searches to determine the respective covering nodes

– if the initial local search from v∈ Sℓ has not touched a now

modified edge (u,x), that local search need not be repeated

– we manage sets Aℓ
u = {v∈ Sℓ | v’s level-ℓ preprocessing

might be affected when an edge (u,x) changes}
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Dynamic Highway-Node Routing

change afew edge weights, server scenario

Road Type

U
pd

at
e 

T
im

e 
[m

s]

0.
1

1
10

10
0

0.
1

1
10

10
0

any motorway national regional urban

add traffic jam
cancel traffic jam
block road
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Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

1. keep the node sets S1⊇ S2⊇ S3 . . .

2. keep the overlay graphs

3. C := all changed edges

4. use the sets Aℓ
u (considering edges in C ) to determine for each

node v a reliable level r(v)

5. during a query, at node v

� do not use edges that have been created in some level > r(v)

� instead, downgrade the search to level r(v) (forward search only)
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Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

∈
−→
G ∈

←−
G

s t

Level 1

Level 2

Level 0x

x

s1 s2 t2 t1

s1 t1

s2 t2

s2 t2

reliable levels: r(x) = 0, r(s2) = r(t2) = 1
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Level 0
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
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Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

iterative variant (provided that only edge weight increases allowed)

1. keep everything (as before)

2. C := /0

3. use the sets Aℓ
u (considering edges in C ) to determine for each

node v a reliable level r(v) (as before)

4. ‘prudent’ query (as before)

5. if shortest path P does not contain a changed edge, we are done

6. otherwise: add changed edges on P to C, repeat from 3.



Sanders/Schultes: Route Planning 89

Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

single pass iterative

|change set| affected query time query time #iterations

(motorway edges) queries [ms] [ms] avg max

1 0.4 % 2.3 1.5 1.0 2

10 5.8 % 8.5 1.7 1.1 3

100 40.0 % 47.1 3.6 1.4 5

1 000 83.7 % 246.3 25.3 2.7 9
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Unidirectional Queries

1. keep everything (as before)

2. C := { some edge (t,x) }

3. use the sets Aℓ
u (considering edges in C ) to determine for each

node v a reliable level r(v) (as before)

4. ‘prudent’ query (as before)
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Unidirectional Queries

∈
−→
G

s t

Level 1

Level 2

Level 0s1 s2 t2 t1

s1 t1

s2 t2

s2 t2

reliable levels: r(t1) = 0, r(t2) = 1
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Highway-Node Routing: Summary

� efficient static approach

– fast preprocessing / fast queries 15 min / 0.9 ms

– outstandingly low memory requirements 0.7 bytes/node 1.4 ms

� can handle practically relevantdynamic scenarios

– change entire cost function typically < 2 minutes

– change a few edge weights

∗ update data structures 2 – 40 ms per changed edge

OR

∗ iteratively bypass traffic jams e.g., 3.6 ms in case of 100 traffic jams

numbers refer to the Western European road network with 18 million nodes and

to our 2.0 GHz AMD Opteron machine
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Work in Progress

� find simpler / better ways to determine the node sets

S1⊇ S2⊇ S3 . . .

� parallelise the preprocessing

� implementation for a mobile device
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Future Work

� handle a massive amount of updates

� deal with time-dependent scenarios

(where edge weights depend on the time of day)

� allow multi-criteria optimisations
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Commercial Usage

� no patents (applies to everything in this talk)

� several publications

(http://algo2.iti.uka.de/schultes/hwy/)

 you can implement everything without asking for permission

(but please tell us)
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Industrial Cooperations

we go for non-exclusive cooperations,

various types come into question, e.g.:

University Company

informal ideas ⇄ requirements, data

contract implementation ⇄ money

contract man-power → joint project← man-power


