Engineering Route Planning Algorithms

Peter Sanders Dominik Schultes

Institut für Theoretische Informatik - Algorithmik II
 Universität Karlsruhe (TH)

in cooperation with
Holger Bast, Daniel Delling, Stefan Funke, Sebastian Knopp, Domagoj Matijevic, Frank Schulz, Dorothea Wagner
http://algo2.iti.uka.de/schultes/hwy/

Oberwolfach, May 2007

Outline

Second Part: Highlighting Aspects of Algorithm Engineering

Engineering

Route Planning Algorithms

First Part: Overview on our
Route Planning Techniques

Route Planning

Goals:

\square exact shortest (i.e. fastest) paths in large road networksfast queries (point-to-point, many-to-many)fast preprocessinglow space consumptionfast update operations

Applications:

\square route planning systems in the internet, car navigation systems,
\square traffic simulation, logistics optimisation

Overview

Highway Hierarchies

Construction: iteratively alternate between
\square removal of low degree nodes
\square removal of edges that only appear on shortest paths close to source or target
yields a hierarchy of highway networks
 in a sense, classify roads / junctions by 'importance'

Highway Hierarchies

\square foundation for our other methods
\square directly allows point-to-point queries
$\square 16$ min preprocessing
$\square 0.76 \mathrm{~ms}$ to determine the path length

$\square 0.93 \mathrm{~ms}$ to determine a complete path description
\square reasonable space consumption (68 bytes/node)
can be reduced to 17 bytes/node

Highway Hierarchies Star

[joint work with D. Delling, D. Wagner]
\square combination of highway hierarchies with goal-directed search
\square slightly reduced query times (0.68 ms)
\square more effective

- for approximate queries or
- when a distance metric instead of a travel time metric is used

Transit Node Routing

[joint work with H. Bast, S. Funke, D. Matijevic]

First Observation:

For long-distance travel: leave current location
via one of only a few 'important' traffic junctions,

$$
\text { called access points } \quad[\text { in Europe } \approx 10]
$$

(\rightsquigarrow we can afford to store all access points for each node)

Second Observation:

Each access point is relevant for several nodes. $\rightsquigarrow>$
union of the access points of all nodes is small, called transit node set [in Europe ≈ 10000]
(\rightsquigarrow we can afford to store the distances between all transit node pairs)

Transit Node Routing

Transit Node Routing

uses highway hierarchies to classify nodes by 'importance’\square very fast queries (down to $6 \mu s, 1000000$ times faster than DIJKSTRA)
\square more preprocessing time (2:44 h) and space (251 bytes/node) needed

Many-to-Many Shortest Paths

[joint work with S. Knopp, F. Schulz, D. Wagner]
\square efficient many-to-many variant of the highway hierarchies query algorithm
$\square 10000 \times 10000$ table in one minute

Static Highway-Node Routing

extend ideas from- multi-level overlay graphs
- highway hierarchies
- transit node routing

\square uses highway hierarchies to classify nodes by 'importance’
\square preprocessing: 19 min
\square memory overhead: 8 bytes/node
\square query time: 1.1 ms

Dynamic Highway-Node Routing

\square change entire cost function typically < 2 minutes

\square change a few edge weights

- update data structures

$$
2-40 \mathrm{~ms} \text { per changed edge }
$$

OR

- perform prudent query
e.g., 47.5 ms if 100 motorway edges have been changed

Models

Application:

\square structure of a road network is ('almost') static
\rightsquigarrow allow preprocessing
\square edge weights may change unexpectedly
\square time-dependent edge weights

\square point-to-point, many-to-many
\square multi-objective

Machine:

\square memory hierarchyparallel

Analysis

Correctness:

for TNR and HNR: probably not too difficult\square for HH : surprisingly difficult (ambigious shortest paths)

Worst-Case Bounds:

\square performance relies on 'certain' graph properties: specify them
\square derive worst-case bounds for graphs with the specified properties

Analysis

Per-Instance Worst-Case Guarantees:

histogram of ($\underbrace{\text { upper bounds on) }}$) the search space sizes of all possible n^{2} queries
can be computed using a linear number of queries

Implementation

[covers all mentioned route planning techniques]quite complex (≈ 18000 lines of code (w/o tools))
\square C++ template mechanism
(currently, 23 different instantiations of our Dijkstra template class)
\square standard template library and 'home-made' data structures

- provide only the required functionality
- can efficiently handle large data sets
\square thorough checking: asserts, naive reference implementations
\square visualisation

Experiments

$\square s$-t-pairs uniformly at random \longleftrightarrow queries in real applications
\square average value \longleftrightarrow variance?

Transit Node Routing (economic variant)

Experiments

\square consider different localities!
\square average value \longleftrightarrow variance?

Transit Node Routing (economic variant)

Diikstra Rank

Experiments

\square consider different localities!
\square plot complete spectrum!

Instances

\square before 2005: only very small road networks publicly and readily available
≈ 200000 nodes, but only
≈ 1000 'degree >2 ' nodes

Instances

\square in 2005: US and Western European road networks obtained

- composed from a public source (US Census Bureau)
- provided by a company (PTV AG) for scientific use

\square now: widely spread (e.g., DIMACS Implementation Challenge)

Instances

Open Issues:

\square turn penalties

NOLEFT TURN

\square
real source-target pairs
(we have some many-to-many instances)
\square real traffic reports (edge weight changes)

\square time-dependent edge weights (not only for motorways!)
\square other graph types

Applications

\square single point-to-point queries

- mobile navigation system (built-in, PDA, mobile phone, ...)
- internet route planning service
\square massive amount of point-to-point queries
- traffic simulations
\square many-to-many queries
- logistics optimisation
- ride sharing

promising contacts to various companies-more to come?

