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Abstract. Highway hierarchies exploit hierarchical properties i@me in real-world road networks to
allow fast and exact point-to-point shortest-path querefast preprocessing routine iteratively performs
two steps: first, it removes edges that only appear on shgrédss close to source or target; second, it
identifies low-degree nodes and bypasses them by intraglstiartcut edges. The resulting hierarchy of
highway networks is then used in a Dijkstra-like bidirenbquery algorithm to considerably reduce the
search space size without losing exactness. The cructaisfétat ‘far away’ from source and target it is
sufficient to consider only high-level edges.

Various experiments with real-world road networks confineperformance of our approach. Ona 2.0 GHz
machine, preprocessing the network of Western Europe,hndoosists of about 18 million nodes, takes
13 minutes and yields 48 bytes of additional data per noden;Ttandom queries take 0.61 ms on average.
If we are willing to accept slower query times (1.10 ms), thenmory usage can be decreased to 17 bytes
per node. We can guarantee that at most 0.014% of all nodesséezl during any query. Results for US
road networks are similar.

Highway hierarchies can be combined with goal-directedcbedhey can be extended to answer many-
to-many queries, and they are a crucial ingredient for ospeedup techniques, namely for transit-node
routing and highway-node routing.

1 Introduction

Computing fastest routes in road networks from a given soto@ given target location is
one of the showpieces of real-world applications of algonics. Many people frequently
use this functionality when planning trips with their cafbere are also many applications
like logistic planning or traffic simulation that need tow®h huge number of shortest-path
queries. In principle we could use Dijkstra’s algorithm.[Blt for large road networks this
would be far too slow. Therefore, there is considerabler@stiein speedup techniques for
route planning. Most approaches, including ours, assumtettie road network istatic
i.e., it does not change very often. Then, we can allow soraprpcessing that generates
auxiliary data that can be used to accelerate all subsequenes. The preprocessing should
be sufficiently fast to deal even with very large road netwotke auxiliary data should
occupy only a moderate amount of space, and the queriestsheuwls fast as possible.

1.1 Related Work

A detailed overview on shortest-path speedup techniquebedound in [2].

Bidirectional Search.A classical technique ibidirectional searchwhich simultaneously
searches forward from the source and backwards from thettardgil the search frontiers
meet. Many more advanced speedup techniques use bidiralcsiearch as an ingredient.

Goal Direction. Road networks allow effective goal-directed search ugingearch[3]:
lower bounds define a vertex potential that directs seamhrtds the target. This approach
was recently shown to be very effective if lower bounds amameted using precomputed
shortest-path distances to a carefully selected set oft&fiduandmarknodes [4, 5] using
theTriangle inequality ALT).

The Precomputed Cluster Distances (PCD) technique [6] @83 precomputed dis-
tances for goal-directed search, yielding speedups cabfgato ALT, but using less space.



The network is partitioned into clusters and the shortesheotion between any pair of
clusters is precomputed. Then, during a query, upper andrlbaunds can be derived that
can be used to prune the search.

Another goal-directed approach is to precompute for eagle &ignposts’ that support
the decision whether the target can possibly be reached btoréest path via this edge.
During a query only promising edges have to be consideredods instantiations of this
general idea have been presented [7—13]. While these nwethbit good query perfor-
mance, preprocessing times are quite large and so far noigreal results for the largest
publicly available road networks have been published.

Separators. Perhaps the most well known property of road networks is tifvey are al-
most planar, i.e, techniques developed for planar graph®ften also work for road net-
works. Queries accurate within a factdr+ ¢) can be answered in near constant time us-
ing O((nlogn)/e) space and preprocessing time [14]. Recently, this apprbashbeen
efficiently implemented and experimentally evaluated onadrnetwork with one million
nodes [15]. While the query times are very good (less thans2for ¢ = 0.01), the pre-
processing time and space consumption are quite high (2&stamd 2 GB, respectively).
Using O(n log® n) space and preprocessing time, query tig/n log n) can be achieved
[16] for directed planar graphs without negative cycles.

Another previous approach is teeparator-based multi-level methpt 17]. The idea is
to use a set of noddg whose removal partitions the graph= G, into small components.
Now consider theverlay graphz; = (V4, E;) where edges iy, areshortcutscorrespond-
ing to shortest paths i& that do not have inner nodes that belong/toRouting can now
be restricted ta7; and the components containingandt¢ respectively. This process can
be iterated yielding a multi-level method. A limitation dfi$ approach is that the graphs
at higher levels become much more dense than the input gréqisslimiting the benefits
gained from the hierarchy. Also, computing small sepasatan become quite costly for
large graphs.

Reach-Based Routing / REAlLet R(v) := max, ey Ry (v) denote theeachof nodev
whereR(v) := min(d(s, v),d(v,t)). Gutman [18] observed that a shortest-path search can
be stopped at nodes with a reach too small to get to sourceget faom there. Goldberg et

al. [19, 20] have considerably strengthened this approgdhtlboducing various improve-
ments, in particular a combination with ALT, yielding tREAL algorithm. Its query per-
formance is similar to our highway hierarchies, while thegrocessing times are usually
worse; a comparison can be found in Section 6.7.

Heuristics. In the last decades, commercial navigation systems werdajsd which had to
handle ever more detailed descriptions of road networksather low-powered processors.
Vendors resolved to heuristics still used today that do na gny performance guarantees:
A* search with estimates on the distance to the target ratherithver bounds or heuristic
hierarchical approaches [21, 22].

1.2 Our Contributions

Our exacthighway hierarchies (first published in [23, 24]) are insditby heuristic hier-

archical approaches. It is a bidirectional technique. @ik search is inside some local
area around source or target, all roads of the network arsidemred. Outside these areas,
however, the search is restricted to ‘important’ roadss@aneral idea can be iterated and
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applied to a hierarchy consisting of several levels. Theiatyoint is the definition of ‘im-
portant streets’. In previous heuristic variants, this mgéin is based on a classification
of the streets according to their type (motorway, nationab regional road,. .). Such a
classification requires manual tuning of the data and aatelizade-off between speed and
suboptimality of the computed routes. In our exact variaotyever, nodes and edges are
classified fully automatically in a preprocessing step ichsaway that all shortest paths are
preserved. By this means, we win not only exactness, butgaksater speed since we can
build high-performance hierarchies consisting of manglewithout worrying about the
quality of the results.

In the preprocessing phase, we alternate between two proededge reduction and
node reductionEdge reductiomemoves non-highway edges, i.e., edges that only appear on
shortest paths close to source or target. More specifiealgry node) has a neighbourhood
radiusr(v) we are free to choose. An edg@e, v) is a highway edge if it belongs to some
shortest path from a nodeto a nodet such that(u, v) is neither fully contained in the
neighbourhood of nor in the neighbourhood @f i.e.,d(s,v) > r(s) andd(u, t) > r(t). In
all our experiments, neighbourhood radii are chosen suwattetich neighbourhood contains
a certain numbef{ of nodes.H is a tuning parameter that can be used to control the rate at
which the network shrinks.

Node reductior(also calledcontractior) removes low degree nodes by bypassing them
with newly introduced shortcut edges. In particular, aldles of degree one and two are
removed by this process.

The query algorithm is very similar to bidirectional Dijkatsearch with the difference
that certain edges need not be expanded when the searcHiggestlf far from source or
target. Highway hierarchies are the first speedup techriltpatevas able handle the largest
available road networks giving query times measured iniseitonds. There are two main
reasons for this success: Under the above reduction reytine road network shrinks in
a geometric fashion from level to level and remains sparseraar planar, i.e., levels of
the highway hierarchy are in some sess# similar The other key property is that prepro-
cessing can be done using limited local searches starimg é&ach node. Preprocessing is
also the most nontrivial aspect of highway hierarchies.drtipular, long edges (e.g. long-
distance ferry connections) make simple minded approafeneso slow. Instead we use
fast heuristics that compute a superset of the set of higladggs.

Some further optimisations allow to drop the average quergs below one millisecond
on a 2.0 GHz machine—even for a road network with more than ll®mnodes. One of
these optimisations is an all-pairs distance table thatneegmpute for the topmost leveél
so that forward and backward search can be stopped as solbe@tsance points to level
have been found. Then, the remaining gap can be bridged byrp@ng a moderate number
of simple table lookups.

We cannot give a general worst-case bound better than EjgsSo far, this drawback
applies to all other exact speedup techniques, where aemgpitation is available, as well.
However, in contrast to most of them, we can provyide-instance worst-case guarantees
i.e., for a given graph, we can determine an upper bound fs#arch space size afy
possible point-to-point query performing only a linear rhen of unidirectional highway
queries.

1.3 Subsequent Work

Various other speedup techniques were inspired by our lagtmerarchies or even use them
as their starting point. Goldberg et al. adopted the intetida of shortcuts in order to im-
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prove both preprocessing and query times of the REAL algarifThere is a many-to-many
variant [25] and a combination with ALT [26]. Furthermorbetfastest implementation of
transit-node routing [27, 28] allowing query times of a feuwcraseconds is also based on
our highway hierarchies. The same applies to highway-nodéng [29], a very recent
approach that can be used to handle dynamic scenarios; jeadfs for example. An alter-
native, heuristic approach to dealing with dynamic scesarnivhich is based on highway
hierarchies as well, has been developed by Nannicini e8@). [

1.4 Outline

After beginning with some preliminaries in Section 2, wenfiaitly define thenighway hi-
erarchyof a given graph in Section 3. Then, Section 4 deals with boticgdures of the
preprocessing phase, the edge reduction (i.e.comstructionof a highway network) and
the node reduction (i.e., theontractionof a highway network). The basic query algorithm
is introduced in Section 5. Furthermore, several optinosatare presented and some ad-
vanced topics, like outputting complete path descriptiamd dealing with turning restric-
tions, are discussed. In Section 6, we present a wide rangepeiimental results, dealing
with various real-world road networks, parameter settiagsl scenarios of application. We
do not only give average query times, but also a detailedyaisabf queries with differ-
ent degrees of difficulty, per-instance worst-case uppents, and comparisons to other
speedup techniques.

2 Preliminaries

Graphs and PathsWe expect alirectedgraphG = (V, E) with n nodes andn edgegu, v)

with nonnegativeweightsw(u, v) as input. Theengthw(P) of a path P is the sum of
the weights of the edges that belongfo P* = (s,...,t) is ashortest pathf there is
no pathP’ from s to ¢ such thatw(P’) < w(P*). Thedistanced(s,t) betweens and¢

is the length of a shortest path fromto ¢ or oo if there is no path froms to t. If P =

(s,...,8 u,ug, ..., u,t',... t)isapath froms tot, thenP|y ., = (s',uy, ug, ..., ug, t')

denotes thesubpathof P from s’ to t'. We useu <p v to denote that a node precedesa
nodev on a pathP = (..., u,...,v,...); we just writeu < v if the pathP that is referred
to is clear from the context.

Dijkstra’s Algorithm. Dijkstra’s algorithm [1] can be used to solve siagle-source shortest-
path (SSSP) probleme., to compute the shortest paths from a single source sntal all
other nodes in a given graph. It is covered by virtually amylieok on algorithms, e.g. [31,
32], so that we confine ourselves to introducing our ternagp! Starting with the source
nodes as root, Dijkstra’s algorithm grows shortest-path tre¢hat contains shortest paths
from s to all other nodes. During this process, each node of thehgeamreachedreached
or settled A node that already belongs to the tresettled If a nodeu is settled, a shortest
path P* from s to u has been found and the distanife, v) = w(P*) is known. A node that
is adjacent to a settled noderesached Note that a settled node is also reached. If a node
is reached, a patk from s to u, which might not be the shortest one, has been found and
atentative distancé(u) = w(P) is known. A nodeu that is not reached igsnreachedfor
such a node, we havgu) = oc.

In case that the shortest paths in a graph are not uniquestijk algorithm can be
easily modified to determinall shortest paths betweerand any node. € V. This means
that not a shortest-path tree is grown, but a shortestgiegbted acyclic graptiDAG).

! This doesot necessarily mean thatis thedirect predecessor af.
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A bidirectionalversion of Dijkstra’s algorithm can be used to find a shoqesh from a
given nodes to a given node. Two Dijkstra searches are executed in parallel: one search
from the source node in the original graphz = (V, E), also calledforward graphand
denoted agi = (V, F); another searches from the target notbackwards, i.e., it searches
in thereverse grapiz = (V, F), E = {(v,u) | (u,v) € E}. The reverse graphy is also
calledbackward graphWhen both search scopes meet, a shortest path4rom has been
found.

3 Highway Hierarchy

A highway hierarchyof a graphG: consists of several levels,, G1, Gs, . . ., G, where the
number of leveld. + 1 is given. We will provide an inductive definition of the lesel

— Base case(, Go): level 0 Gy = (Vo, Ey)) corresponds to the original graj¥y fur-
thermore, we definé&, := G.

— First step ¢ — G4+1,0 < ¢ < L): for givenneighbourhood radjiwe will define the
highway networlkG,.; of a graphG,.

— Second step(, — G),1 < ¢ < L): for a given setB, C V, of bypassableodes, we
will define thecore G, of level /.

First step fighway network For each node:, we choose nonnegativeeighbourhood
radii 7,”(u) andr; (u) for the forward and backward graph, respectively. To avoithe
case distinctions, we set”(u) andr; () to infinity for « ¢ V, (Radius Property R1) and
for ¢ = L (R2). In all other cases, neighbourhood radii have tethe (R3).

The level/ neighbourhoodf a nodeu € V) isN; 7 (u) :={v € V] | dy(u,v) < r;7(u)}
with respect to the forward graph and, analogously; (u) := {v € V| dj (u,v) <
r;” (u)} with respect to the backward graph, whéyéu, v) denotes the distance fromto v
in the forward grapltz, andd; (u, v) := d(v,u) in the backward graphy,.

The highway networlG,; = (Vi41, Eey1) Of @ graphG), is defined by the set,,, of
highway edgesan edg€u, v) € Ej belongs toE,,, iff there are nodes, ¢ € V// such that
the edggu, v) appears in some shortest path. . ., u, v,...,t) from s tot in G, with the
property thaty ¢ N, (s) andu ¢ N, (t). Figure 1 gives an example. The $ét, is the
maximal subset oV, such thai&,.; contains no isolated nodes.

N;@)\ N (t)
O 2 | o O

Highway

Fig. 1. A shortest path from a nodeto a node. Edges that leave the neighbourhood of ¢t and edges that are completely
outside the neighbourhoods ©ndt arehighway edges

Second stepcbrg. For a given setB, C V, of bypassablenodes, we define the sét
of shortcut edgeshat bypass the nodes iB,: for each pathP = (u,by,ba, ..., by, v)
with u,v € V, \ B, andb; € B,,1 < i < k, the setS, contains an edgéu,v) with
w(u,v) = w(P). Thecore G, = (V/, E}) of level ¢ is defined in the following way:
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V)=V, \ ByandE, := (E, N (V/ x V/)) U S,. This definition is illustrated in Figure 2.
Removing all core nodes fro, yields connectedomponents of bypassed nodes

Thelevel /(e) of an edgee is max{/ | e € E, U S,}. For an edgéu,v), we usually
write just/(u, v) instead of¢((u, v)). The highway hierarchy can be interpreted as a single
graphg := (V, E'U Ule S;) where each node and each edge has additional information on
its membership in the various séts V,, By, £y, E}, Sy.

contracted network ("core")
= non-bypassed nodes
+ shortcuts

bypassed
nodes

Bl

Fig. 2. The core of a highway network consists of the subgraph irdibgethe set of non-bypassed nodes and additional
shortcut edges.

4 Construction

4.1 Computing the Highway Network

Neighbourhood RadiiLet us fix any rule that decides which element Dijkstra’s altmn
removes from the priority queue in the case that there is ithame one queued element with
the smallest key. Then, during a Dijkstra search from a givettew, all nodes are settled
in a fixed order. Thd®ijkstra rankrk, (v) of a nodev is the rank ofv w.r.t. this orderu has
Dijkstra rank rk,(u) = 0, the closest neighbouy, of u has Dijkstra rank ri(v;) = 1, and
So on.

We suggest the following strategy to set the neighbourhadil fFor this paragraph, we
interpret the graplts, as an undirected graph, i.e., a directed e@lge) is interpreted as
an undirected edgéu, v} even if the edg€v, ) does not exist in the directed graph. Let
d;” (u,v) denote the distance between two nodesidv in the undirected graph. For a given
parameterH,, for any nodeu € V/, we setr,” (u) := r; (u) := d; (u,v), wherewv is the
node whose Dijkstra rank fkv) (w.r.t. the undirected graph) i§,. For any node: ¢ V/,
we setr,” (u) := r; (u) := oo (to fulfil R1).

Originally, we wanted to apply the above strategy to the &oohand backward graph one
after the other in order to define the forward and backwartdisadespectively. However, it
turned out that using the same value for both forward andwakradius yields a similar
good performance, but needs only half the memory.

Fast Construction: Outline.Given a graph’), we want to construct a highway network
G41. We start with an empty set of highway edges,,. For each node, € V/, two
phases are performed: the forward construction of a pati@test-path DAG3 (containing

all shortest paths from, to any nodeu € B) and the backward evaluation &f. The
construction is done by an SSSP search frgmduring the evaluation phase, paths from
the leaves ofB to the roots, are traversed and for each edge on these paths, it is decided
whether to add it tdZ,, ; or not. The crucial part is the specification of an abort aotefor

the SSSP search in order to restrict it to a ‘local search’.
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Fig. 3. Abort criterion.

Phase 1: Construction of a Partial Shortest-Path DA .Dijkstra search froms is exe-
cuted. In order to keep track of all shortest paths, for eaxdenn the partial shortest-path
DAG B, we manage a list of (tentative) parents: when an €dge) is relaxed such that
dy(s0,u) + w(u,v) = d(v), thenu is added to the list of tentative parentsiofDuring the
search, a reached node is either in the sdateveor passive The source nods, is active;
each node that is reached for the first tinmesérf) and each reached node that is updated
(decreaseKeyis set to active iff any of its tentative parents is activenéll a node is set-
tled, we consider all shortest patsfrom s, to p as depicted in Figure 3. The statepof

set to passive if

V shortest path®’ = (sq,...,p) :
s1=p APEN(s1) A so @ N (p) A PTONT (s1) NN (p)] <1 (1)

When no active unsettled node is left, the seardbrtedand the growth of3 stops.
An example for Phase 1 of the construction is given in Figur&h® intuitive reason
for s; (which is the first successor of on the pathP’) to appear in the abort criterion is

¢ (s1) N (p)

b'e
O
00
55

OO0
ei¥s

Fig. 4. An example of Phase 1 of the construction. The weight of am éslthe length of the line segment that represents
the edge in this figure. The neighbourhood sizeis 3. An SSSP search is performed frem The abort criterion applies
three times: the involved nodes andp and the corresponding neighbourhoods are markegidn magentaandbrown,
respectively. In th&rown casgthe intersection of the concerned neighbourhoods canaiactly one element; in the other
two cases, the intersections are empty. All edges that fetmsy’s partial shortest-path tree are coloured: edges thagleav
active nodes arblue, edges that leave passive nodesgieen
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the following: When we deactivate a nogeluring the search from,, we decide to ignore
everything that lies behing. We are free to do this because the abort criterion ensuaés th
s1 can take ‘responsibility’ for the things that lie behipd.e., further important edges will
be added during the search fram (Of course,s; will refer a part of its ‘responsibility’ to

its successor, and so on.)

Phase 2: Selection of the Highway Edge3uring Phase 2, exactly all edgés, v) are
added tol,, that lie on pathgs, ..., u,v, ..., p) in the partial shortest-path DAB with
the property that ¢ N, (so) andu ¢ N, (p). The example from Figure 4 is continued in
Figure 5.

Fig. 5. An example of Phase 2 of the constructien’s partial shortest path tree has five leavgswhich are marked in
different colours. Thedgeghat are added t&, 1 are highlighted.

Theorem 1. An edge(u,v) € FE, is added toE,,, by the construction algorithm iff it
belongs to some shortest path= (s,...,u,v,...,t) andv € N, (s) andu & N, (t).

Proof. In this proof, we will refer to the following Mighbourhood Property N1 that follows
directly from the neighbourhood definition: Consider a séstrpath(s, ..., u,...,t) in Gj.
Then,t € N, (s) impliesu € N, (s) ands € N, (t) impliesu € N, (¢).

<) Consider the node, on P|,_., such thatv & N, (sy) andd,(sg,v) is minimal.
Such a node, exists because the conditieng N, (sq) is always fulfilled fors, = s.
The direct successor af, on P is denoted bys;. Note thatv € N,;7(s1) [*]. We show
that the edgéu, v) is added tak,,; when Phase 1 and 2 are executed frgmDue to the
specification of Phase 2, it is sufficient to prove that afteage 1 has been completed, the
partial shortest-path DA® contains a nodg € P|,,_.; such that < p andu & N, (p).

If ¢ € B, this statement is obviously fulfilled fgr := ¢ sincev < ¢t andu & N, (1).
Otherwise { ¢ B), the search is not continued from some nagle< ¢ on P|y, ;. We can
conclude that, is passive because, otherwise, its successét|gn.; would adopt its active
state and the search would not be aborted at that time. Sinseactive and,, is passive,
eithert, or one of its ancestors must have been switched from actpadsive. Lep denote
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the first passive node oR|,_.; = (so, $1,...,D,...,t0,...,t). Due to the definition of the
abort condition, we have, < pAp € N, (s1)Aso € N7 (p)AN|P'ON; (s1)NN;(p)| <1
[*¥], where P' = P|,,_,. The facts that € N,7(s1) [see *] andp & N, (s1) [see **]
imply v < p due to N1. In order to obtain a contradiction, we assurme N, (p). Since
so & N; (p) [see **], this impliess, < u by N1. Hences; < u. Becauser € N, (s1)
[see *], we obtain: € N, (s;) due to N1. Similarly, we get € N, (p) sincev < p and

u € N, (p). Thus{u,v} C P'NN,”(s1)NN,;~(p). Therefore| P'NN,;~ (s1) NN, (p)| > 2,
which is a contradiction to [**]. We can conclude thatz N, (p).

=) Since each patts, ..., u,v,...,p)in Bisashortest path, the claim follows directly

from the specification of Phase 2. O

Algorithmic Details: Phase 1For an efficient implementation, we keep track db@der
distanceh(x) and areference distance(x) for each node: in B. Along a path”’ as depicted
in Figure 3, we assigh(z) the distance from the root to the border of the neighbourtodod
s1 as soon as; is settled. This value is passed to all successors on theyhith allows to
determine the first node outside\,~ (s;), i.e., its direct predecessois the last node inside
N, (s1). In order to fulfil the abort condition, we have to make sugths the only node on
P"within ;7 (s1) NN~ (p). Therefore, we want to check whethes direct predecessar
belongs toV,~(p). To allow an easy check, we determine, store, and propaugateference
distance froms, to w as soon aw is settled. Knowing the reference distankés, @), the
current distancé, (s, p) andp’s neighbourhood radius(p), checkingu ¢ N, (p) is then
straightforward. If there are several shortest paths fsgrto some node:, we determine
appropriate maxima of the involved border and referendaites.

More formally, for any noder in B, n(x) denotes the set of parent nodesBn To
avoid some case distinctions, we s¢t,) := {so}, i.e., the root is its own parent. For the
root sq, we seth(sy) := 0 anda(sg) := oo. For any other node # s,, we definet/(z) :=
de(so, )47, () if 59 € m(x), and 0, otherwiséj(x) := max({0'(z) }U{b(y) | y € m(x)});
a'(r) := max{a(y) | y € w(z)}; anda(z) := max{di(so,u) | y € w(z) ANu € w(y)} if
a'(x) = 0o A dy(so, z) > b(z), andd’(z), otherwise.

Then, we can easily check the following abort criterion atttled nodep:

a(p) + 1y (p) < de(s0,p) (2)
Lemma 1. (2) implies (1).

Proof. We prove the contraposition-*(1) implies— (2)”, i.e., we assume that there is some
shortest patt®’ from s, to p suchthap < s;Vp € N;7(s1)Vso € Ny (p) VP NN (s1)N
N;=(p)| > 2 and show that(p) + 7, (p) > di(s0, D).

Case 1:;p < s;. If p = sp, thena(p) = oo, which yields— (2). Otherwise § = s;),
b(p) > di(so,p) + 17 (p), d'(p) = oo, anda(p) = da'(p) sincedy(so,p) < b(p), which
implies— (2).

Case 2:s; < p Ap € N;7(s1). Due to N1 (see proof of Theorem 1), we haie s; <
r=<p:x €N, (s1). HenceVx : dy(so, x) < dy(so, s1) + 1,7 (s1) < b(z). By an inductive
proof, we can show that(p) = oo, which yields— (2).

Case 3is; < pAp & N7 (s1) Aso € N7 (p). We haved,(so, p) < r; (p), which directly
implies— (2).

Case 4is; < pAp & N;7(s1) Nso & N7 (p) AP N N;7(s1) N N7 (p)] > 2. The
assumption of Case 4 implies that there are two nadesdv, s; < u < T < p, that belong
to P"NN,;(s1) NN, (p). If a(p) = oo, we directly have- (2). Otherwise, there has to be
some nodev on P’ such that/(w) = oo A dy(sg, w) > b(w). Obviously,w # so,. Consider
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such a nodev that maximises,(sq, w), i.e., for all nodes: > w the above stated condition
does not hold, which implieg(z) = «'(x) > a(w). In particular,a(p) > a(w). We have
b(w) > dy(so,s1) + 1,7 (s1). We can conclude that,(so, w) > dy(so,s1) + 7,7 (s1) and,
thus,w ¢ N;”(s1). We obtain, by N1z < 7 < w. Hencea(w) > d,(so, @), which implies
a(p) > dy(so, ). Furthermore, since € N, (p), we have; (p) > di(w, p). Adding up the
last two inequalities yields(p) + r; (p) > du(so, p), which corresponds te (2). O

Algorithmic Details: Phase 2For a nodex € B, we defineB(u) := {u} U{v | visa
descendant of in B} and theslack A(u) := miny,epw) (r; (w) — de(u, w)). For a leafb,
we haveB(b) = {b} and A(b) = r, (b). The slack of an inner node can be computed
using only the slacks of its childrefi(u): A(u) = min (r; (), mineecw) A:(u)), where
A.(u) == A(c) — do(u, ¢). This leads to an equivalent, recursive definition.

The tentative slacks)(u) of all nodesu in B are set to-;~(u). We process all nodes in
the reverse order as they were settled. This guaranteealtiigscendants of some node
have been processed befarés processed. We can stop as soon as a mode\,” (s) is
encountered. We maintain the invariant that the tentatmeksa(u) of an element that is
processed is equal to the actual slatk:). When a node: is processed, for each parent
of uin B, we perform the following steps: computk, (p) = A(u) —de(p, u); if A,(p) <0,
the edgep, u) is added tak,, ; if A,(p) < A(p), the tentative slack\(p) is set toA, (p).
Figure 6 gives an example.

Fig. 6. An example of theslack-based methathat realises Phase 2 of the construction. The processuensbily for a
part of the tree. As before, the weight of an edge is the leofjthe line that represents the edge in this figure. For the sak
of transparency, the (rounded) weights are given explifitt the relevant edges. Furthermore, the slacks of thdvuado
nodes are given. Edges that adled toF,; are red, edges that anet addedlue.

Theorem 2. An edge(u, v) is added toE,,; by theslack-based methadtroduced above
iff it lies on a path(sy, ..., u, v, ..., p) in the partial shortest-path DA® with the property
thatv & N, (so) andu & N, (p).

Proof. <) From the definition of the slack of a node, it follows that

Ay(u) = A(v) = dlu,v) <y (p) = de(v,p) — de(u,v) = ;" (p) — de(u, p) <0
because: ¢ N, (p). Sincev ¢ N, (so), v is processed at some point. Theh,(u) is
computed and, since it is negative, the efge) is added taF,. ;.
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=) Only edges that belong to a path i from s, to a nodep are considered. The
conditionv & N, (sg) is never violated because the traversal from the leavesetooibt,
and consequently, the addition of edgediq;, is not continued when a nodec N, (so)
is encountered. If an edge:, v) is added, the conditiom\,(u) < 0 is fulfilled. Hence,
A(u) = mingep) (r; (w) — de(u, w)) < A, (u) < 0. Therefore, there is a nogesuch that
de(u,p) >y (p), 1.€.,u & N~ (p). O

Theorem 3. Let Vz denote the set of nodes @fs partial shortest-path DA@. LetGg =
(Vs, Ep) denote the subgraph 6f, that is vertex induced by. The complexity of Phase 1
and 2 started from is Tpjjkstra(|G=1)-

Proof. The number of nodes @f 5 is denoted by:’, the number of edges by'. The com-
plexity of Phase 1 corresponds to the complexity of a SSSRis@aG z started froms,
i.e.,O(n’ +m') outside the priority queue plug insertandn’ deleteMinoperations plus at
mostm’ decreaseKepperations. During Phase 2, each node and each edge is ggdas
most once, i.e., Phase 2 runshin’ + m/). 0

Speeding Up the Highway Network Constructidiven a single active endpoint of a long
edge (e.g., a long-distance ferry connection) can causega tearch space during con-
struction, although most nodes of the search space migtadirbe passive. To face this
undesirable effect, we declare an active node be amaverickif d,(so,v) > f -1, (s0),
wheref is a parameter. When all active nodes are mavericks, thelstam passive nodes

is no longer continued. This way, the construction procesecelerated ant,,; becomes

a superset of the highway network. Hence, queries will bevesipbut still compute exact
shortest paths. Thaaverick factorf enables us to adjust the trade-off between construction
and query time.

4.2 Computing the Core

In order to obtain the core of a highway network, we contriaetlich yields several advan-
tages. The search space during the queries gets smalleisipassed nodes are not touched
and the construction process gets faster since the neatideonly deals with the nodes that
have not been bypassed. Furthermore, a more effectiveabioin allows us to use smaller
neighbourhood sizes without compromising the shrinkinghef highway networks. This
improves both construction and query times. However, bsipgsnodes involves the cre-
ation of shortcuts, i.e., edges that represent the bypd3sedo these shortcuts, the average
degree of the graph is increased and the memory consumptiarsgin particular, more
edges have to be relaxed during the queries. Therefore, veetba@arefully select nodes so
that the benefits of bypassing them outweigh the drawbacks.

We give an iterative algorithm that combines the selectibthe bypassable nod€s,
with the creation of the corresponding shortcuts. We mamaagiack that contains all nodes
that have to be considered, initially all nodes fréin As long as the stack is not empty,
we deal with the topmost node We check théoypassability criterion#shortcuts< ¢ -
(degjp(u) + degqui(u)), which compares the number of shortcuts that would be atedten
uwas bypassed with the sum of the in- and outdegree ©he magnitude of the contraction
is determined by the parameterif the criterion is fulfilled, the node is bypassed, i.eisit
added taB, and the appropriate shortcuts are created. Note that thgamenf the shortcuts
alters the degree of the corresponding endpoints so thaskypg one node can influence
the bypassability criterion of another node. Thereforeadjacent nodes that have been
removed from the stack earlier, have not been bypassedanyétare bypassable now are
pushed on the stack once again.
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Theorem 4. If ¢ < 2,

Ejlisin O([Ve| + [Exl).

Proof. If a nodeu is bypassed, the number of edges in the (tentative) coreisased by
D, := #shortcuts- degj, (u) — deggy(u). (We have to subtracteg;, (u) anddegq,(u) since
the edges incident ta no longer belong to the core.) Note th@éshortcuts= deg;,(u) -
deggui(u) — deg_, (u), wheredeg_ (1) denotes the number of adjacent nodé¢kat are con-
nected tou by both an edgéu, v) and an edgév, u). (We have to subtracleg. ., (u) to ac-
count for the fact that a ‘shortcut’ that would be a self-la®pot created.) We can conclude
thatD, < degjn(u) - degoy(u) — degin(u) — degoy(u). If degjn(u) < 1 or degoy(u) < 1,
we obtainD, < 0. Now, we deal with the case thdtg;,(u) > 2 anddegg(u) > 2.
Sincedeg_ (u) < min(degj,(u), degy(w)), @ node that fulfils the bypassability criterion
also fulfils degjy(u) - degou(u) < c - (degin(u) + degoui(u)) + min(degin(u), degoy(w)).
The inequalityz - y < ¢(z + y) + min(z,y) has only finitely many solutiongz, y) for
z,y € Nyz,y > 2if ¢ € Ris a constant less than 2. Consider the solutiarny) that max-
imisesk := x - y. If there is no solution, také := 0. Note thatk is a constant that only
depends on the constantWe can conclude thd?, < k.

Each node froni/, is bypassed at most once. For each bypassed node, the nuinber o
edges in the (tentative) core is increased by at thosherefore|E)| < k- |V,| + |E,|. O

If we used#shortcuts< max (deg;,(u), degou(u)) as bypassability criterion, we would
get a contraction that would be very similar to our earliee-and-lines method [23]. Note
that the general version presented above allows a moretieffespntraction by setting
appropriately.

Limiting Component SizesTo reduce the observed maximum query time, we implement
a limit on the number of hops a shortcut may represent. Byrtieans, the sizes of the
components of bypassed nodes are reduced—in particugiiyshcontraction step tended
to create quite large components of bypassed nodes so thakia long time to leave such

a component when the search was started from within it.

5 Query

Our highway query algorithms a modification of the bidirectional version of Dijkstra’s
algorithm. Note that in contrast to the construction, dgrine query we needot to keep
track of ambiguous shortest paths. For now, we assume thaetrch isiot aborted when
both search scopes meet. This matter is dealt with in Se&ti®nWe only describe the
modifications of the forward search since forward and bac#vsaarch are symmetric. In
addition to thedistancefrom the source, each node is associated with the séavehand
thegapto the ‘next applicable neighbourhood border’. The seatatisat the source node
sinlevel 0. First, a local search in the neighbourhood of performed, i.e., the gap to the
next border is set to the neighbourhood radius af level 0. When a node is settled, it
adopts the gap of its pareatminus the length of the edde, v). As long as we stay inside
the current neighbourhood, everything works as usual. Mewéf an edggu, v) crosses
the neighbourhood border (i.e., the length of the edge iatgrehan the gap), we switch
to a higher search levél The nodeu becomes aentrance pointo the higher level. If the
level of the edg€u,v) is less than the new search levelthe edge isot relaxed—this
is one of the two restrictions that cause the speedup in cosgpeato Dijkstra’s algorithm
(Restriction 1). Otherwise, the edge is relaxe@dopts the new search leveand the gap
to the border of the neighbourhoodwin level ¢ sinceu is the corresponding entrance point
to level/.
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We have to deal with the special case that an entrance polevéb’/ does not belong
to the core of level. In this case, the search is continued inside a componentpafdsed
nodes till the levek core is entered, i.e., a node= V is settled. At this pointy is assigned
the gap to the border of the levéheighbourhood ofi. Note that before the core is entered
(i.e., inside a component of bypassed nodes), the gap hasrigsty (according to R1). To
increase the speedup, we introduce another restricticstiiR#on 2): when a node € V/ is
settled, all edge&u, v) that lead to a bypassed node B, in search level arenotrelaxed,
i.e., once entered the core, we will never leave it again.

Figure 7 gives a detailed example of the forward search ofjlaviiy query. The search
starts at node. The gap ofs is initialised to the distance fromto the border of the neigh-
bourhood ofs in level 0. Within the neighbourhood af the search process corresponds
to a standard Dijkstra search. The edge that leadsléaves the neighbourhood. It is not
relaxed due to Restriction 1 since the edge belongs only& G In contrast, the edge that
leavess; is relaxed since its level allows to switch to level 1 in tharsé processs:; and its
direct successor are bypassed nodes in level 1. Their rmightods are unbounded, i.e.,
their neighbourhood radii are infinity so that the gap issétfinity as well. Ats/, we leave
the component of bypassed nodes and enter the core of leNein the search is continued
in the core of level 1 within the neighbourhood gf. The gap is set appropriately. Note
that the edge to is not relaxed due to Restriction 2 sincés a bypassed node. Instead, the
direct shortcut t@, is used. Here, we switch to level 2. In this case, we do not ¢iméenext
level through a component of bypassed nodes, but we getlglireto the core. The search
is continued in the core of level 2 within the neighbourhobdo And so on.

P A

o o é/s’ﬁortcujg{ ,// .........

Restriction 2

Fig. 7. A detailed example of a highway query. Only the forward se#@clepicted. Nodes in level 0, 1, and 2 are vertically
striped, solid, and horizontally striped, respectivetyldvel 1, dark shades represent core nodes, light shadesssg
nodes. Edges in level 0, 1, and 2 are dashed, solid, and dogtgmbctively.

Despite of Restriction 1, we always find the optimal path sitlee construction of the
highway hierarchy guarantees that the levels of the edgeé®#hong to the optimal path are
sufficiently high so that these edges are not skipped. Réstri2 does not invalidate the
correctness of the algorithm since we have introduced shisrthat bypass the nodes that
do not belong to the core. Hence, we can use these shortstgadhof the original paths.

5.1 The Basic Algorithm

We use two priority queue§ and@, one for the forward search and one for the backward
search. For each search direction, a nede associated with a tripl&(u), £(u), gagu)),
which we often calkey. It consists of the (tentative) distanéé.) from s (or t) to u, the
search level(u), and the gap gdp) to the next applicable neighbourhood border. Only the
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first component (u) is used to decide the priority within the quetid/e use the remaining
two components for a tie breaking rule in the case that theesawde is reached with two
different keysk := (0, ¢, gap andk’ := (¢', ¢',gap) such that = ¢’. Then, we prefek to

K iff ¢ > ¢ or¢ = ¢’ Ngap< gap. Note thaianyother tie breaking rule (or even omitting an
explicit rule) will yield a correct algorithm. However, tlthosen rule is most aggressive and
has a positive effect on the performance. Figure 8 conthmpseudo-code of the highway

query algorithm.

input source node and target node
output distancei(s, t)

d = o0;
inser(Q, s, (0,0,ro"(s))); inser(Q, ¢, (0,0, 75 (1)));
while (Q U Q # 0) do {
select direction= € {—, «—} such thalp+ 0;
u = deIeteMin@);
if u has been settled from both directithen d’ := min(d’, 3 (u) + 3 (u));
if gap(u) # oo thengap := gap(u) elsegap := 77, (u);
foreache = (u,v) € £ do {
for (¢ := £(u), gap:= gag; w(e) > gap;
e+, gap:= ;" (u));
if £(e) < £then continue
if u € V/ Av € Be then continug
k= (6(u) +w(e),£, gap— w(e));

if v has been reachalen decreaseKe@, v, k); elseinsert@, v, k);

// go “upwards”
/I Restriction 1
/I Restriction 2

e T I
25 [RlE[E] Ge Moo & wl-

}
15 }
16 return d’;

Fig. 8. The highway query algorithm. Differences to the bidirestibversion of Dijkstra’s algorithm are marked: additional
and modified lines have a framed line number; in modified |itles modifications are underlined.

Remarks:

— Line 4: The correctness of the algorithm does not dependestthtegy that determines
the order in which the forward and the backward searchesracegsed. However, the
choice of the strategy can affect the running time in the thaean abort-on-success

criterion is applied (see Section 5.3).

— Line 7: This line deals with the special case that the en&ggmint did not belong to the
core when the current search levelas entered, i.e., the gap was set to infinity. In this
case, thegapis setat*%(u). This is correct even if. does not belong to the core, either,
because in this case the gap stays at infinity.

— Line 9: It might be necessary to go upwards more than one ieaestingle step.

— Line 13: In the decreaseKey operation, the old key @fonly replaced by if the above
mentioned condition is fulfilled, i.e., if (a) the tentatigdistance is improved or (b) stays
unchanged while the tie breaking rule succeeds. In the ledtge (b), no priority queue
operation is invoked since the priority (the tentative aligte) has not changéd.

2 |f the search direction is not clear from the context, we widplicitly write 3 (u) and ‘s (u) to distinguish between's

priority in @ and@.

% That way, we also avoid problems that otherwise could arisenaan already settled node is reached once again via a

zero weight edge.
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Algorithmic Details. If we group the outgoing edg€gs, v) of each node: by level, we
can avoid looking at edges, v) in levels/(u,v) < ¢(u) since Restriction 1 would always
apply to them. We can do without explicitly testing Restant?2 if all edges(u, v) with
k= l(u,v),u € V/, andv € By have been downgraded to level- 1. Then, the test of
Restriction 1 also covers Restriction 2.

5.2 Proof of Correctness

Difficulties. Although the basic concepts (e.g. the definition of the higywetwork) and
the algorithm are quite simple, the proof of correctness gatprisingly complicated. The
main reason for that is the fact that we cannot provettieghortest path is found since there
might be several shortest paths of the same length. We cesidree that the shortest paths
in the input are unique or that the uniqueness can be guadbieadding small fractions
to the edge weights as it is done by other authors who facdasiproblems. However, the
former would be too restrictive since usually, in real-wlarbad networks, there are at least
a few ambiguous instances, and a reliable realisation ofatter would be rather difficult.
Furthermore, the introduction of shortcuts adds a lot ofigoiby even if it was not present
in the input.

Therefore, if we pick any shortest pathto show that it is found by the query algorithm,
it can happen that a nodeon P is settled from another node than its predecessoP on
Of course, in this case; will still be assigned the optimal distance from the soutnd,
the search level and the distance to the next neighbourhomtbmay be different than
expected so that we have to adapt to the new situation.

Outline. We face the above mentioned difficulties in the following w&yrst, we show
that the algorithm terminates and deal with the special tdaseno path from the source
to the target exists (Section A.1). Then, we introduce soefaitions and concepts that
will be useful in the main part of the correctness proof. Ictiem A.2, we define for a
given path, a correspondir@pntractedpath and arexpandedpath, where subpaths in the
original graph are replaced by shortcuts or vice versagasly. In Section A.3, we first
define the concepts ddist neighbourandfirst core nodewhich, iteratively applied, lead to
anunidirectional labellingof a given path. Figure 9 gives an example. Applying a forward
and a backward labelling to the same path then allows theitiefiof a meeting leveand
a meeting point(Figure 10). The latter requires a case distinction sineeftlhward and
backward labelling may either meet in some core or in somepom@nt of bypassed nodes.
Finally, we introduce the terrighway patha path whose properties exactly comply with
the two restrictions of the query algorithm. Figure 11 gigasexample.

In Section A.4, we deal with the reachability along a highywayh. Basically, we show
that if the query has settled some naden a highway path with the appropriate key, then

Ny~ (s0) N (1)

Fig. 9. Example for a forward labelling of a patR. The labelss, and s; are set tos (base case). The nodg is the
last neighbour ok, (denoted byw {(s})), the nodes’ is the first level-1 core node (denoted By (s1)), s2 is the last
neighbour ofs}, and so on.
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t=t, t)=ty

QOCCQCCOG

80—50

Fig. 10. Example for a forward and backward labelling (depicted Wwedmd above the nodes, respectively). The meeting
level is 2, the meeting point js

SRR A s
0 0 0 1 1 1 1 1 Ot

Fig. 11. Example for a highway path. Each edge belongs at least toitka tevel, each node at least to the given core
level.

u’S successor on that path can be reached fzomith the appropriate key as well (Lemmas 6
and 7, which are proved using the auxiliary Lemma 5). In othends, if there is a highway
path, the query can follow the path (at least if there was nbiguity).

In Section A.5, we use all concepts and lemmas introducedepteceding sections to
conduct the actual correctness proof, where we also dealambiguous paths. The general
idea is to say that at any point the query algorithm has sorhié stateconsisting of a
shortests-t-path P and two nodes < u that split P into three parts such that the first and
the third part are paths in the forward and backward seageeh tespectively, and the second
part is a contracted path. For such a valid state, we can phat@ny node on the first and
third part has been settled with the appropriate key (LemmE&@thermore, we can show
that P is a highway path (Lemma 9).

When the algorithm is started, the nodeandt are settled and some shortest-path
P in the original graph exists. (The special case that+tepath exists has already been
dealt with.) Consequently, oumitial state is composed of the contracted versio®and
the nodes; andt, which makes it a valid state. final state is a valid state where forward
and backward search have met, i.e., they have settled a comodeu = . Originally, we
wanted to show that a shortest path is found. Now, we see (mta 10) that it is sufficient
to prove that a final state is reached.

We have already defined the meeting pgirdn a path. We fall back on this definition
and intend to prove that forward and backward search meetghen we look at any valid
non-final state, it is obvious that at least one search dinecian proceed to get closer;ip
l.e., we havey < p orp < u (Lemma 11). We pick such mon-blockedsearch direction.
Let us assume w.l.0.g. that we picked the forward directiéa know that: has been settled
with the appropriate key and th&tis an optimal highway path (Lemmas 8 and 9). Due to the
‘reachability along a highway path’ (Lemmas 6 and 7), we camctude that.’s successor
v can be reached with the appropriate key as well, in particuith the optimal distance
from s. A node that can be reached with the optimal distance with aks settled at some
point with the optimal distance. However, we cannot be shiagt is settled withu as its
parent since the shortest path frerto v might be ambiguous. At this point the state concept
gets handy: we just replace the subpati®dfom s to v with the path in the search tree that
actually has been taken yielding a pdth; we obtain a new state that consists/of and
the nodes andw. We prove that the new state is valid (Lemma 12).

Thus, we can show that from any valid non-final state anothkd tate is reached at
some point. We also show in Lemma 12 that we cannot get intesytie of states since

16



in each step the length of the middle part of the path is dsedkaHence, starting from the
initial state, eventually a final state is reached so thabatsst path is found (Theorem 5).
The actual proof can be found in Appendix A.

5.3 Optimisations

Rearranging NodesSimilar to [20], after the construction has been completextearrange
the nodes by core level, which improves locality for the skan higher levels and, thus,
reduces the number of cache misses.

Speeding Up the Search in the Topmost Lelelt us assume that we have a distance table
that contains for any node pairt € V] the optimal distancé(s,t). Such a table can
be precomputed during the preprocessing phasg’pySSSP searches i@’,. Using the
distance table, we do not have to search in léveéhstead, when we arrive at a node= V;/
that leads to level,, we addu to the initially empty setl or T depending on the search
direction; we do not relax the edge that leads to ldveAfter all entrance points have been
encountered, we consider all pajis v) € T x T and compute the minimum path length
D := W(u) +dr(u,v) + 7(@). Then, the length of the shortest-path is the minimum of
D and the lengtl’ of the tentative shortest path found so far (in case thatehech scopes
have already metin a level L).

For the sake of a simple incorporation of this optimisatiatio ithe highway query algo-
rithm, we slightly revise the properties R1 and R2: we use dvgtinguishable valueso,
andoo, that are larger than any real number andr$etu) := oo, for any ¢ and any node
u ¢ V) (R1) andr;“(u) := oo, for any nodeu € V; (R2). Then, we just add two lines to
Figure 8 and modify Line 16:

between Lines 7 and 8: o
7a if gap # oo Al(u) = L then {[:=7 U{u}; continue;}

between Lines 11 and 12: L
11a if gap# ooy Al = L AL > {(u) then{T:=T U{u}; continue;}

16 return min({d'} U {3 (u) + dp(u,v) + 6 (v) |ue T,ve T});

In Section A.6, we show that our proof of correctness stildsovhen the distance table
optimisation is applied.

Abort on Successln the bidirectional version of Dijkstra’s algorithm, wercabort the
search as soon as both search scopes meet. Unfortunaihyotnd be incorrect for our
highway query algorithm. Therefore, we use a more conseevetiterion: after a tentative
shortest pathP’ has been encountered (i.e., after both search scopes hgyvehadorward
(backward) search is not continued if the minimum elemenf the forward (backward)
queue has akey(u) > w(P’). Obviously, the correctness of the algorithm is not invetiéti

by this abort criterion. In [23] we tried using more soplaated criteria in order to reduce
the search space. However, it turned out that this simpiern, since it can be evaluated
so efficiently, yields better query times in spite of a somatarger search space. Note that
when the distance table optimisation is used and randoniegugre performed, our simple
abort criterion is very close to an optimal criterion everthaiespect to the search space
size: our experiments indicate that less than 1% of the Besgpace is visited after the first
meeting of forward and backward search.
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5.4 Outputting Complete Path Descriptions

The highway query algorithm in Figure 8 only computes théagise froms to ¢. In order
to determine the actual shortest path, we need to storegpsifiom each node to its parent
in the search tree. Note that the algorithm could be easilgifiedl to computell shortest
paths betweenr andt by just storing more than one parent pointer in case of anitikgu
However, subsequently, we only deal with a single shortat$t.p

We face two problems in order to determine a complete deagmmipf the shortest path:
(a) we have to bridge the gap between the forward and backisardost core entrance
points (in case that the distance table optimisation is)uaed (b) we have to expand the
used shortcuts to obtain the corresponding subpaths irrigiea graph.

Problem (a) can be solved using a simple algorithm: We stdtt the forward core
entrance point. As long as the backward entrance paihtas not been reached, we consider
all outgoing edgesu, w) in the topmost core and check whethgf(u, w) + di(w,v) =
dr(u,v); we pick an edgéu, w) that fulfils the equation, and we set= w. The check can
be performed using the distance table. It allows us to ghgeditermine the next hop that
leads to the backward entrance point.

Problem (b) can be solved without using any extra data (Watda For each shortcut
(u,v) € S, on the shortest path, we perform a search frotn v in order to determine the
represented path i@,. This search can be accelerated by using the knowledge&itgt
edge of the path enters a componénof bypassed nodes, the last edge leads, &and all
other edges are situated within the compon&ni he represented path @, may contain
shortcuts from sets,, k < ¢, which are expanded recursively. In the end, we obtain the
represented path fromto v in the original graph.

However, if a fast output routine is required, it is neceggarspend some additional
space to accelerate the unpacking process. We use a rafitestsmated data structure to
represent unpacking information for the shortcuts in a eficient way (Variant 2). In
particular, we do not store a sequence of node IDs that desarpath that corresponds to
a shortcut, but we store onlyop indices for each edgéu, v) on the path that should be
represented, we store its rank within the ordered group gégthat leave. Since in most
cases the degree of a node is very small, these hop indicdsecstiored using only a few
bits. The unpacked shortcuts are stored in a recursive wgy,tke description of a level-2
shortcut may contain several level-1 shortcuts. Accogliige unpacking procedure works
recursively.

To obtain a further speed-up, we have a variant of the unpgakata structures (Vari-
ant 3) that caches the complete descriptions—without semus—of all shortcuts that be-
long to the topmost level, i.e., for these important shdgthat are frequently used, we do
not have to use a recursive unpacking procedure, but we saapgpend the corresponding
subpath to the resulting path.

5.5 Turning Restrictions

A turning restriction (in its simplest and most common folisgxpressed as an edge pair
((u,v), (v,w)): the edge&v, w) must not be traversed if the nodénas been reached via the
edge(u, v). Dealing with turning restrictions is a well-studied prefvl [33, 34]. In principle,
there are two basic approaches: modifying the query atlyardr modelling the restrictions
into the graph, which introduces additional artificial ne@dad edges at affected road junc-
tions. The latter technique can be applied irrespective®iised query algorithm.

In case of highway hierarchies, we expect that modellingiigy restrictions into the
graph only slightly deteriorates the performance sinceattiéicial nodes usually have a
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very small degree so that most of them get bypassed in thefivetrgontraction step. Fur-
thermore, turning restrictions are often encounteredcl Istreets that are not promoted to
high levels of the hierarchy so that the negative impact isbled to the lower levels. With
respect to memory consumption, it is important to note tfiat ¢he preprocessing has been
completed, artificial nodes and edges at road junctionsahigt belong to level 0 can be
abandoned provided that the query algorithm (which in 18yabkt corresponds to Dijkstra’s
algorithm) is modified appropriately to handle turning resions.

6 Experiments

Apart from Section 6.8, all experimental results refer te sicenario where we only want
to compute the shortest-path length between two nodes wiithdputting the actual route.
Turning restrictions are exclusively handled in Sectidh 6.

6.1 Implementation

We implemented highway hierarchies in C++, using the C+in&iad Template Library
and making extensive use géneric programmingechniques using C++'s template class
mechanism. As graph data structure, we use our own impletenbf anadjacency array
extended by an additional layer that contains level-speddta for each node and level that
the node belongs to. We use 32 bits to store edge weights dhdepgyths Binary heaps
are used as priority queues. Note that in case of road nesvayrly a comparatively small
number ofdecreaseKepperations is performed. Furthermore, the number of ntadsare

in the priority queue at the same time is very small in casagiiway hierarchies (usually
less than 100 nodes). Therefore, using a more sophistipataity queue implementation
is not likely to increase the performance significantly. 5ome more details on the imple-
mentation, we refer to Appendix B.

6.2 Environment and Instances

The experiments were done on one core of a single AMD OpteroceBsor 270 clocked at
2.0 GHz with 8 GB main memory and>2 1 MB L2 cache, running SUSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler24u&ing optimisation
level 3.

We deal with the road networks of Western Eurbpad of the USA (without Hawaii)
and Canada. Both networks have been made available fortiicierse by the company
PTV AG. The original graphs contain for each edge a length amdad category, e.g.,
motorway, national road, regional road, urban street. \Bgyasaverage speeds to the road
categoried compute for each edge the average travel time, and use gightwin addition,
we perform experiments on a publicly available version @& t/5 road network (without
Alaska and Hawaii) that was obtained from the TIGER/Line&{B5]. However, in contrast
to the PTV data, the TIGER graph is undirected, planariseddéstinguishes only between
four road categories (40, 60, 80, 100 km/h), in fact 91% of@dids belong to the slowest
category so that you cannot discriminate them.

Table 1 summarises important properties of the used roadoniet and the key results
of the experiments.

4 Austria, Belgium, Denmark, France, Germany, Italy, Luxenny, the Netherlands, Norway, Portugal, Spain, Sweden,

Switzerland, and the UK
5 For Europe: 10, 20,. ., 130 km/h; for USA/CAN: 16, 24, 32, 40, 56, 64, 72, 80, 88, 96,04, 112 km/h.
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Table 1. Overview of the used road networks and key resuft&verhead/node’ accounts for tedditional memory that

is needed by our highway hierarchy approach (divided by timber of nodes) compared to a space-efficient bidirectional
implementation of Dijkstra’s algorithm. Query times aremge values based on 10 000 randetrqueries. ‘Speedup’
refers to a comparison with Dijkstra’s algorithm (uniditieaal). Worst case is an upper bound &ty possible query in
the respective graph.

Europe USA/CAN USA (Tiger)

#nodes 18029721 18 741 705 24 278 285
INPUT #directed edges 42199587 47 244 849 58 213 192
#road categories 13 13 4
BARAM average speeds [km/h] 10-130 16-112 40-100
' H 30 40 40
PREPROC CPU time [min] 13 17 15
@overhead/node [byte] 48 46 34
CPU time [ms] 0.61 0.83 0.67
#settled nodes 709 871 925
QUERY #relaxed edges 2531 3376 3823
speedup (CPU time) 9935 7259 9303
speedup (#settled nodes) 12715 10750 12889
worst case (#settled nodes) 2388 2428 2505

6.3 Parameters

Default Settings.Unless otherwise stated, the following default settingdyapVe use the
maverick factorf = 2(i — 1) for thei-th iteration of the construction procedure, the con-
traction ratec = 2, the shortcut hops limit 10, and the neighbourhood stZess stated in
Table 1—the same neighbourhood size is used for all levelhararchy. First, we contract
the original grapR. Then, we perform five iterations of our construction progedwhich
determines a highway network and its core. Finally, we camfhe distance table between
all level-5 core nodes.

Self-Similarity. For two levels/ and? + 1 of a highway hierarchy, thehrinking factor

is the ratio betweenE;| and|£,_ ,|. In our experiments, we observed that the highway
hierarchies of Europe and the USA were almgaf-similarin the sense that the shrinking
factor remained nearly unchanged from level to level whemsezl the same neighbourhood
size H for all levels—provided that/ was not too small.

Figure 12 demonstrates the shrinking process for Europt that the first contraction
step is not shown. In contrast to our default settings, wealatop after five iterations. For
most levels and? > 70, we observe an almost constant shrinking factor (which argpe
as a straight line due to the logarithmic scale of the y-aXibg greater the neighbourhood
size, the greater the shrinking factor. The last iteratsogmn exception: the highway network
collapses, i.e., it shrinks very fast because nodes thatl@se to the border of the network
usually do not belong to the next level of the highway hidngyand when the network gets
small, almost all nodes are close to the border. In case drtiedlest neighbourhood size
(H = 30), the shrinking factor gets so small that the network dodsalbapse even after
14 levels have been constructed.

Varying the Neighbourhood Siz&lote that in order to simplify the experimental setup all
results in the remainder of Section 6.3 have been obtaindtbuti rearranging nodes by
level. However, since we want to demonstrate the effectdhobsing different parameter
settings, the relative performance is already very medmning

%n Section 3, we gave the definition of the highway hierarshigere we first construct a highway network and then

contract it. We decided to change this order in the experisjéme., to start with an initial contraction phase, sina w
observed a better performance in this case.
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Fig. 12. Shrinking of the highway networks of Europe. For differeatghbourhood size& and for each level, we plot
|E; |, i.e., the number of edges that belong to the core of l&vel

In one test series (Figure 13), we used all the default gestixcept for the neighbour-
hood sizeH, which we varied in steps of 5. On the one hand{/ifs too small, the shrinking
of the highway networks is less effective so that the levebi® is still quite big. Hence, we
need much time and space to precompute and store the distdodeeOn the other hand,
if H gets bigger, the time needed to preprocess the lower lavalgases because the area
covered by the local searches depends on the neighbourimed-sirthermore, during a
guery, it takes longer to leave the lower levels in order tbtgehe topmost level where
the distance table can be used. Thus, the query time inareaseell. We observe that the
preprocessing time is minimised for neighbourhood sizearad 40. In particular, the opti-
mal neighbourhood size does not vary very much from grapinaplg In other words, if we
used the same paramefdr say 40, for all road networks, the resulting performanceldio
be very close to the optimum. Obviously, choosing diffemregighbourhood sizes leads to
different space-time trade-offs.
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Fig. 13.Preprocessing and query performance depending on theboeigiood siz€ .

Varying the Contraction Ratdn another test series (Table 2a), we did not use a distance ta
ble, but repeated the construction process until the topleas was empty or the hierarchy
consisted of 15 levels. We varied the contraction rafiem 0.5 to 2.5. In case af = 0.5
(andH = 30), the shrinking of the highway networks does not work propso that the top-
most level is still very big. This yields huge query times.oB8king larger contraction rates
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reduces the preprocessing and query times since the calesearch spaces get smaller.
However, the memory usage and the average degree aresiigitdased since more short-
cuts are introduced. Adding too many shortcuts=(2.5) further reduces the search space,
but the number of relaxed edges increases so that the quesy tjet worse.

Varying the Number of Leveldn a third test series (Table 2b), we used the default setting
except for the number of levels, which we varied from 6 to 1ate\that the original graph
and its core (i.e., the result of the first contraction stepints as one level so that for example
‘6 levels’ means that only five levels are constructed. Irheast case, a distance table was
used in the topmost level. The construction of the higheelewf the hierarchy is very
fast and has no significant effect on the preprocessing tilnesontrast, using only six
levels yields a rather large distance table, which somewslosts down the preprocessing
and increases the memory usage. However, in terms of queegti6 levels’ is the optimal
choice since using the distance table is faster than cdngirthe search in higher levels.
We omitted experiments with less levels since this wouldidyiery large distance tables
consuming very much memory.

Results for further combinations of neighbourhood sizetraetion rate, and number of
levels can be found in Table 5 and 6 in Appendix C.

Table 2. Preprocessing and query performance for the European etawrk depending on the contraction ratg) and
the number of levels (b). ‘overhead’ denotes the averageaneoverhead per node in bytes.

PREPROC QUERY

PREPROCESSING QUERY . .
contr. | . . # | time over{time #settled
time over- time #settled #relaxed .
ratec : @deg levelg[min] head[ms] nodes
[min] head [ms] nodes edges

6 12 480.75 709
7 10 340.93 852
8 10 3(01.14 991
9 10 301.35 1123
10 10 29154 1241
11 10 291.67 1326

0.5 83 30 3.2391.73 472326 1023944
1.0 15 28 3.7 548 6396 23612
15 11 28 3.8 193 1830 9281
20 11 29 4.0 185 1542 8913
2.5 11 30 4.1 196 1489 9175

6.4 Local Queries

For use in applications it is unrealistic to assume a unifdistribution of queries in large
graphs such as Europe or the USA. On the other hand, it wouldhfzdy more realistic to
arbitrarily cut the graph into smaller pieces. Therefore,decided to measure local queries
within the big graphs: For each power of two= 2%, we choose random sample poiats
and then use Dijkstra’s algorithm to find the nadeith Dijkstra rank rk(¢) = r. We then
use our algorithm to make ant-query. By plotting the resulting statistics for each value
r = 2F, we can see how the performance scales with a natural meafsdiféiculty of the
query. Figure 14 shows the query times. Note that for ranke @ the median query times
are scaling quite smoothly and the growth is much slower tharexponential increase we
would expect in a plot with logarithmie axis, lineary axis, and any growth rate of the form
r? for Dijkstra rankr and some constant powgyrthe curve is also not the straight line one
would expect from a query time logarithmicinFor ranks: > 29 the query times hardly
rise due to the fact that the all-pairs distance table caigbrthe gap between the forward
and backward search of these queries irrespective of dealth a small or a large gap. In
case of Europe and USA/CAN, the query times dropsfor 224 sincer is only slightly
smaller than the number of nodes so that the target lies tbabe border of the respective
road network which implies some kind of trivial sense of go@éction for the backward
search (because, in the beginning, we practically cannottgdhe wrong direction).
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Fig. 14. Local queries. The distributions are represented as bdxadmisker plots [36]: each box spreads from the lower
to the upper quartile and contains the median, the whiskeené to the minimum and maximum value omitting outliers,
which are plotted individually.

6.5 Space Saving

If we omit the first contraction step and use a smaller cotitiacate & less shortcuts), use

a bigger neighbourhood sizex(higher levels get smaller), and construct more levels leefor
the distance table is useé>(smaller distance table), the memory usage can be reduced
considerably. In case of Europe, using seven levéls; 100, andc = 1 yields an average
overhead per node of 17 bytes. The construction and quemlstintrease to 55 min and
1.10 ms, respectively.

6.6 Worst Case Upper Bounds

By executing a query from each node of a given graph to an asdéated dummy node
and a query from the dummy node to each actual node in the laadkyvaph, we obtain
a distribution of the search space sizes of the forward acévird search, respectively.
We can combine both distributions to get an upper bound ®udiktribution of the search
space sizes of bidirectional queries: whén (z) (F._(z)) denotes the number of source
(target) nodes whose search space consistsrafdes in a forward (backward) search, we
defineF..(z) :== >, . F~(2) - F_(y), i.e., F.(2) is the number oé-t-pairs such that
the upper bound of the search space size of a query frtwm is z. In particular, we obtain
the upper bounthax{z | F._.(z) > 0} for the worst case without performing alt possible
gueries.

Figure 15 visualises the distributiofi (2) as a histogram. In a similar way, we obtained
a distribution of the number of entries in the distance tahé¢ have to be accessed during
an s-t-query. While the average values are reasonably small (4D6&se of Europe), the
worst case can get quite large (62 379). For example, aoge68i379 entries in a table of
size 9351x 9 351 takes about 1.1 ms, where 9 351 is the number of nodes let#l-5 core
of the European highway hierarchy. Hence, in some casegtieeneeded to determine the
optimal entry in the distance table might dominate the qtiemg. We could try to improve
the worst case by introducing a case distinction that chediether the number of entries
that have to be considered exceeds a certain threshold.Wesaould not use the distance
table, but continue with the normal search process. How#vsmeasures would have only
little effect on theaverageperformance.
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Fig. 15. Histogram of upper bounds for the search space sizestafueries. To increase readability, only the outline of
the histogram is plotted instead of the complete boxes.

6.7 Comparisons

In Table 3, we compare our highway hierarchies with someehtlbst competitive methods
where experimental results are available for the Westeroggaan and the US road network,
namely with the REAL algorithm [20], transit-node routiry], and highway-node routing
[29]. For REAL and transit-node routing slightly smalleraghs were used, namely the
largest connected component of each road network corgistiabout 99% of all nodes.
Experiments with the REAL algorithm have been performed siightly different machine
(dual-processor, 2.4 GHz AMD Opteron).

Although a comparison is difficult since all approachesvalttifferent choices of pa-
rameter settings yielding different space-time trads;offe can make some general state-
ments: The strength of transit-node routing is clearly ttteegnely good query performance.
Highway-node routing has an outstandingly low memory camsion, while the query
times are competitive to highway hierarchies and REAL omesigyhtly superior in case
of the US road network. Highway hierarchies can achieve \@nypreprocessing times
or a quite low memory consumption, while query times arearably good in all cases.
REAL's performance is similar to highway hierarchies exdep the preprocessing times,
which tend to be considerably higher.

It is very important to note that both highway-node routimgl ahe implementation of
transit-node routing considered in this section are baseolo highway hierarchies. Thus,
at the moment neither of these methods can supersede thedyidtierarchies approach.
Actually, the results for highway-node routing are betteart the ones published in [29]

Table 3. Comparison between highway hierarchies (HH), the REAL @tlg, transit-node routing (TNR) and highway-
node routing (HNR). For the former three approaches, diffeparameter settings are examined. ‘disk space’ dertmes t
total amount of memory needed to store the preprocessedndatdingthe original graph on disk.

Europe USA (Tiger)

PREPROCESSING  QUERY PREPROCESSING  QUERY
method time disk space time #settledtime disk space time #settled

[min]  [MB] [ms] nodes|[min] [MB] [ms] nodes
HH 13 1241/0.61 709 15 13240.67 925
HH (mem) 55 697/1.10 1863 70 942|1.21 2143
REAL (16,1) 97 18491.22 814 64 30281.14 675
REAL (64,16) 141 10151.11 679 121 15751.05 540
TNR (eco) 46 23040.0134 N/A 59 30730.0115 N/A
TNR (gen) 164 47140.0056 N/A 205 61080.0049 N/A
HNR 15 503/0.88 1017 16 640/0.50 760
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since in the meantime the highway hierarchies have imprevethighway-node routing
directly benefits from that.

6.8 Outputting Complete Path Descriptions

So far, we have reported only the times needed to computétreest-path length between
two nodes. Now, we determine a complete description of tloetsst path. In Table 4 we
give the additional preprocessing time and the additiorsi space for the unpacking data
structures. Furthermore, we report the additional timeithaeeded to determine a complete
description of the shortest path and to travéissumming up the weights of all edges as
a sanity check—assuming that the query to determine theestqrath length has already
been performed. That means that the total average time ¢ondieie a shortest path is the
time given in Table 4 plus the query time given in previouddsh Note that Variant 1 is
no longer supported by the current version of our implentenriao that the numbers in the
first data row of Table 4 have been obtained with an older arand different settings.

We can conclude that even Variant 3 requires little add#igreprocessing time and
only a moderate amount of space. With Variant 3, the time fapuatting the path remains
considerably smaller than the time to determine the patptteand a factor 3—5 smaller
than using Variant 2. The US graph profits more than the Eamogeaph since it has paths
with considerably larger hop counts, perhaps due to a langeber of degree two nodes in
the input. Note that due to cache effects, the time for otitpythe path using preprocessed
shortcuts is likely to be considerably smaller than the tionéraversing the shortest path in
the original graph.

Table 4. Additional preprocessing time, additional disk space amelyg time that is needed to determine a complete de-
scription of the shortest path and to traverse it summindhepieights of all edges—assuming that the query to determine
its lengths has already been performed. Moreover, the ggeramber of hops—i.e., the average path length in terms of
number of nodes—is given. The three algorithmic variantsdascribed in Section 5.4.

preproc. space query #hopgreproc. space query #hops
[s] [MB] [ms] (avg.) [s] [MB] [ms] (avg.)

Europe F USA (Tiger)

Variant 1 0 0 17.22 136 0 0 39.69 4410
Variant 2 69 126 0.49 136 68 127 1.16 4410
Variant 3 74 225 0.19 136 70 190 0.25 4410

6.9 Turning Restrictions

We did an experiment with the German road network (a subgoéphbr European network)
and real-world turning restrictions (also provided by PTW)verify our expectation that
incorporating the restrictions into the graph has onlytielgffect on the performance. The
results are positive: the preprocessing time does not edhg total number of nodes and
edges in the highway hierarchy only increases by 4%, andubeydimes rise by 3%.

6.10 Distance Metric

When we apply a distance metric instead of the usual (and &mt practical applications
more relevant) travel time metric, the hierarchy that iser@mt in the road network is less

" Note that we danot traverse the path in the original graph, but we directly sb@arassembled description of the path.

8 Note that in the current implementation outputting pathcdpsions and the feature to rearrange nodes by level are
mutually exclusive. However, this is not a limitation infeiple.
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distinct since the difference between fast and slow roadesfaWe no longer observe the
self-similarity in the sense that a fixed neighbourhood giekls an almost constant shrink-
ing factor. Instead, we have to use an increasing sequeneggifbourhood sizes to ensure
a proper shrinking. For Europe, we ude=100, 200, 300, 400, 500 to construct five levels
before an all-pairs distance table is built. Constructimg hierarchy takes 34 minutes and
entails a memory overhead of 36 bytes per node. On averagedam query then takes
4.88 ms, settling 4810 nodes and relaxing 33481 edges. dfugitperiments on different
metrics can be found in [26].

6.11 An Even Larger Road Network

Very recently, we obtained a new version of the Europeanneadork that is larger than the
old one and covers more countflet has been provided for scientific use by the company
ORTEC and consists of 33726 989 nodes and 75 108 089 diredtgxs.eWe use the same
parameters as for the old version (in particuldr= 30) and observe a very good shrinking
behaviour: we have 1.87 times as many nodes in the beginmingfter the construction of
the same number of levels only 1.04 times as many nodes refifais, the same number of
levels is sufficient, only the distance table gets slightygler. We arrive at a preprocessing
time of 18 minutes, a memory overhead of 37 bytes per nodegaed/ times of 0.60 ms
for random queries; on average, 685 nodes are settled antd&ifes are relaxed.

7 Discussion

Highway hierarchies are a simple, robust and space-efticemcept that allows very ef-
ficient exact fastest-path queries even in huge real-warddl metworks. These attributes
have been confirmed in an extensive experimental studyoa¢th highway hierarchies are
already very useful when applied directly, their usefuinestends to a much wider range:
some concepts like the contraction of a network have turnétbde advantageous for other
speedup techniques as well; they can be extended to deamaitly-to-many queries; the
currently fastest shortest-path algorithm for static roativorks is based on them; an effi-
cient approach to dealing with dynamic scenarios like tg#fins uses highway hierarchies
in its preprocessing phase;.

Nevertheless, a lot of interesting questions remain. Hotatadle mobile devices with
limited fast memory? How to deal with multiple objective @iions or with time-dependent
edge weights? What about public transportation networks?

We are optimistic that highway hierarchies and related outtare a promising starting
point to tackle several of these problems.
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A Query—Proof of Correctness

Additional Notations. o’ denotegath concatenatiorsucc(u, P) andpred(u, P) denote the
direct successor and predecessat oh P, respectively. We just writeucc(u) andpred(u)
if the path is clear from the context. For two nodesndv on some pathnin(u, v) denotes:
if v < v andv otherwisemax(u, v) is defined analogously.»(u, v) := w(P|,_.,) denotes
the distance fromu to v along the pathP. Note that for any edgéu, v) on P, we have
w(u,v) = dp(u,v).

A.1 Termination and Special Cases

Since we have set the neighbourhood radius in the topmast tevnfinity (R2), we are
never tempted to go upwards beyond the topmost level. ThEgrghtion is formalised in the
following lemma.

Lemma 2. The for-loop in Line 9 of the highway query algorithm alwagmiinates with
¢ < Land({=L — gap= c0).

Proof. We only consider iterations where the forward search doads selected; analogous
arguments apply to the backward direction. By an inductik@of)y we show that at the
beginning of any iteration of the main while-loop, we haie) < L and({(u) = L —
gapu) = oo) for any nodeu in Q.

Base CaseTrue for the first iteration, where onky/belongs toQ : we havel/(s) =0 < L
and gags) = ;" (s) (Line 2), which is equal to infinity if. = 0 (due to R2).

Induction StepWe assume that our claim is true for iteratioand show that it also holds
for iterationi + 1. Due to the induction hypothesis, we haife) < L and({(u) = L —
gapu) = oo) in Line 5. If {(u) = L, we have gap= gap = r,,(u) = oo (Line 7 and
9, R2); thus the for-loop in Line 9 terminates immediatelyhwi = ¢(u) = L. Otherwise
(/(u) < L), the for-loop either terminates with< L or reacheg = L; in the latter case,
we have gap= r,”(u) = oo (Line 9, R2); hence, the loop terminates.

Thus, in any case, the loop terminates with L and(¢ = L — gap= oo). Therefore,
if the nodev adopts the key: in Line 13 (either by a decreaseKey or an insert operation),
the new key fulfils the required condition.

This concludes our inductive proof, which also shows thatdlaim of this lemma holds
during any iteration of the main while-loop. ad

It is easy to the see that the following property of Dijksdralgorithm also holds for the
highway query algorithm.

Proposition 1. For each search direction, the sequence of distai¢egof settled nodes
is monotonically increasing.

Now, we can prove that

Lemma 3. The highway query algorithm terminates.

Proof. The for-loop in Line 9 always terminates due to Lemma 2. Thiddop in Line 8
terminates since the edge set is finite. The main while-ladpne 3 terminates since each
nodev is inserted into each priority queue at most once, nametysfunreached (Line 13);
if it is reached, it either already belongs to the priorityegae or it has already been settled;
in the latter case, we know thétv) < d(u) < §(u) +w(e) (Proposition 1; edge weights are
nonnegative) so that no priority queue operation is peréatriciue to the specification of the
decreaseKey operation. O
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The special casehat there is no path fromto ¢ is trivial. The algorithm terminates due to
Lemma 3 and returns since no node can be settled from both search directionsr{pie,
there would be some path frosto ¢). For the remaining proof, we assume that a shortest
path froms to ¢ exists in the original grapty.

A.2 Contracted and Expanded Paths

Lemma 4. Shortcuts do not overlap, i.e., if there are four nodes v’ < v < v’ on a path
P in G, then there cannot exist both a short¢utv) and a shortcutu’, v') at the same time.

Proof. Let us assume that there is a shorteutv) € S, for some level. All inner nodes,
in particularw’, belong toB,. Sinceu’ does not belong t¥,, a shortcut that starts fromi
can belong only to some levil< /. If there was a shortcyt/, v') € Sk, the inner node
would have to belong t®,, which is a contradiction since< V. O

Definition 1. For a given pathP in a given highway hierarchy, thecontractegathctr(P)
is defined in the following way: while there is a subpéthb,, bs, . . ., by, v) withu, v € V/
andb; € By,1 <i < k,k > 1, for some level, replace it by the shortcut edde, v) € S,.

Note that this definition terminates since the number of sadehe path is reduced by at
least one in each step and the definition is unambiguous dusniona 4.

Definition 2. For a given path” in a given highway hierarchg, the level¢ expandegbath
exp(P, ¢) is defined in the following way: while the path contains a $tutredggw, v) € Sy
for somek > /, replace it by the represented pathd#y.

Note that this definition terminates since an expanded shimaa only contain shortcuts of
a smaller level.

A.3 Highway Path

Consider a given highway hierarcyand an arbitrary patk = (s, ..., t). In the following,
we will bring out the structure oP w.r.t. G.

Last Neighbour and First Core Nodd-or any levell and any node: on P, we define the
last succeeding leveélneighbourw; (1) and thefirst succeeding levelcore nodea’; (u):
W (u)isthe node € {z € P|u =z Adp(u,z) < r;”(u)} that maximisesp(u, v), and
—P

o, (u)isthenode € {t} U{x € PNV, | u < z} that minimisesip(u, v). Thelast pre-
ceding neighbouts} (u) and thefirst preceding core node’; (u) are defined analogously.

Unidirectional Labelling. Now, we inductively define a forwarthbelling of the pathP.
The labelss, and s, are set tos and for/,0 < ¢ < L, we sets,,; = o, (s;) and
Spp1 = 5’5+1(8£+1)- Furthermore, in order to avoid some case distinctiens; := t.
For an example, we refer to Figure 9.

Proposition 2. The following properties apply to the lidirectional) forward labelling
of P:

—Ulis=s0=s5,=s51 281 =2 ... s, 28 Zsp1 =t

— U2a:vl,0 <l < L:Vu,s; 2u = spq:dp(sy,u) <1, (s))

— U2b:V0,0 < 0 < L:Yu > spqq 2 dp(s),u) >r;(s))

—U3: V,0</{<L:Vu,sp=u<s,:ugV,

—Ud: YW, 0<(<L:s;,=tVs,eV/

A backward labelling (specifying nodesandt)) is defined analogously.
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Meeting Level and PointThe meeting level of P is 0 if s = ¢ andmax{¢ | s, < t,} if
s # t. Note that\ < L (in any case) anth,; < s);1 (in case that # t). Themeeting point
p of P is eithert, (if ¢, < s)) ormin(sy;1,?)) (otherwise). Figure 10 gives an example.

Proposition 3. The following properties apply to theédting point of P:

_Ml.S)\jpth
- M2ty 2p =2 sa
~M3VEOS LS L:(sy<p—p=ty)A(p =<ty — s, =p)

Proof. The cases = t is trivial. Subsequently, we assumeZ ¢. In order to prove M1, M2,
and (M3 for/ = )), we distinguish between two cases.
Case 1ty =< s\. Then,p = t,. M1 is fulfilled due to the definition of the meeting level,
which impliess, < t,. Furthermore, due to U1, we hawig ; <t} <ty =p < s} =< sy
so that M2 and (M3 fof = \) are fulfilled.
Case 2:5) < ty. Then,p = min(sy;1,t)).
Subcase 2.15,,1 < t). Then,p = s,,1. We haves, < s\ < sy;1 = p <t} = ¢, so that
M1 and (M3 for¢ = \) are fulfilled. Furthermore, M2 holds due#Q,; < s.1.
Subcase 2.2, < sy;1. Then,p = t). Sinces, < t, < t, we know thats), € V) (due to
U4). Thus, we have) <t <t, (otherwise {, < s\ < t,), we would have a contradiction
with U3). Hences, < s\ <t} = p < t, so that M1 and (M3 for = ) are fulfilled. M2
holds as well since,,; < t\, =p < sxy1.

It remains to show M3 fof < A and for/ > A. In the former case, M3 holds due to M1,
which impliess;, < s\ < p < t\ =< ¢, (UL). In the latter case, M3 holds due to M2, which
impliest;, < tx11 < p =< sap1 = s; (UL). O

Highway Path.P = (s, ..., t) is ahighway pathFigure 11) iff the following two Hghway
properties are fulfilled:

— HL:V,0 < /¢ < L:H1({)
— H2:Vv0,0 < /¢ < L:H2()
where

— H1(0): Y(u,v),s) [u<v =ty :u,v eV,
— H2(0): Y(u,v),s0 2 u<v <ty: l(u,v) > L

A.4 Reachability Along a Highway Path

We consider a patk® = (s, ..., t). For anode: on P, we define theeference level (u) :=
max({0} U{i|s; < u}).

Proposition 4. For any two nodes andv with u < v, the following reference ével prop-
erties apply:

-LL0</l(u)<L

- L3. u j S?(u)+1

— L4l (u) <l(v)

Definition 3. A nodeu is said to beAppropriatelyreached/settled with the kéy= (0 (u),
/(u), gap(u)) on the pathP iff all of the following conditions are fulfilled:

— Ay(k,u): 0(u) = do(s,u)
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— Ay(k,u): 0(u) = 0 (u)
if u =< Sé(u)

oo
- Ay(u):Viit#£s 2u—ueV/

The following (somewhat technical) lemma will be used toverbemmas 6 and 7. Basi-
cally, it states that in the highway query algorithm the skdevel and the gap to the next
applicable neighbourhood border are set correctly.

Lemma 5. Consider a pathP = (s, ..., t) and an edgéu, v) on P. Assume that is settled
by the highway query algorithm appropriately with some keWe consider the attempt to
relax the edgdu, v). After Line 9 has been executed, the followingariants apply w.r.t.
the variabled and gap:

—11:@) s 2un(b)v = s
—12: 0 =1 (v)

—13:gap=1{ > o= s
~98P= 1 (s)) — dp(s),u) otherwise.

Proof. We distinguish between two cases in order to prove 11 and I3.

Case 1:zero iterations of the for-loop in Line 9 take plade ¢(u)).

In this case, we have = ¢(u) andw(u,v) < gap. Hence,s;, < u due toA,(k,u) and L2
(= 11a). In order to show I1b and I3, we distinguish betweendlmabcases:

— Subcase 1.1 < s, = v < s} < s¢11 (U1) (= I1b). Furthermore, because of dap =
oo (As(u, k)), we have gap= gap = r;(’u)(u) = oo due to U3 and R1= 13 since
v = s)).

— Subcase 1.2u = s, = gapu) = oo (A3(u, k)) = w(u,v) < gapg = r,; (u) (Line 7)
= dp(s),v) <17 (s)) (sinceu = s}) = v < sp41 (U2D) (= 11b). Furthermore, gap-
gap =, (u) = r; (s;) — dp(sy, u) (Sinceu = s;) implies 13 sinces), < v.

— Subcase 1.3u >~ s, = gapu) = r;7(s;) — dp(s), u) (As(u, k)). By Lemma 2/ < L
and({ = L — gap= o0). If £ = L, we havev <t = s;.1 = spy1 (= 11b) and
gap= oo = 1,°(sy) — dp(sy,u) (R2) (= I3 sinces, < v). Subsequently, we deal with
the remaining casé < L. The facts that. < ¢ ands, < u imply s, # ¢, which yields
s, € V/ due to U4. Hence, due to R3, dap # co = w(u,v) < gap = gafgu) (Line 7)
= dp(u,v) < r;7(s)) —dp(sy,u) = dp(s),v) < 1,.7(s)) = v = se1 (U2b) (= I1b).
Furthermore, gap- gap = gapu) = r; (s}) — dp(s}, u) implies I3 sinces, < v.

Case 2:at least one iteration of the for-loop takes plate-(¢(u)).

We claim that after any iteration of the for-loop, we have- s,. Proof by induction:

Base CaseWe consider the first iteration of the for-loop. Line 9 andfénet that an iteration
takes place implyv(u, v) > gag, which means that gag# oco. We distinguish between two
subcases to show thdb (s, v) > 740, (Syw))-

— Subcase 2.11 < sy, = gap(u) = oo (A3(u, k)) = w(u,v) > gap = r;, (u) (Line 7)
= Ty (u) # 00. We haves,,) = u = sy, due to L2,45(u, k), and the assumption of
Subcase 2.1. However, we can exclude @} < u < s, this would implyu & V.,
(U3) and, thusy,,, (u) = oo (R1). Thereforey = s;,) = dp(sj,), v) > 40, (Syw)

— Subcase 2.2u - sj,, = Sy, F t = Sy, € Vi, (U4). Furthermore, gap) =
T o) (Soguy) = AP (Spy» w) (As(u, k) = gap(u) # oo (due to R3 sincé(u) < L (Lemma2)
andsj,, € Vy,)) = dp(u,v) = w(u,v) > gap = gap(u) = () — dp(sy) )
(Line 7)= dp (), v) > 740 (i)
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Fromdp(sy,): v) > 70, (Sy)), itfollows thatsyq,) 11 < v (U2a), whichimpliesi)+1 = u.
Henceu = sy)11 (Sinceu =< sy,41 due to L3 andA,(k, u)).
Induction StepLet us now deal with the iteration from levelo leveli + 1 fori > ¢(u) + 1.
We havew(u,v) > gap = r; (u), which impliesr;”(u) # oo. Starting withu = s; <
s: < s;41 (induction hypothesis, U1), we can conclude that s, (U3, R1)= dp(s;,v) >
ri(sh) = sip1 < v (U2a)= s;41 = u= u = s;41 (Sinceu = s;11). This completes our
inductive proof.

After the last iteration, we have = s, < s, (= I1a). Furthermorew(u, v) < r;”(u). If
u < s, we obtainu < s, < s,41 (= 11b) and gap= r,;”(u) = oo due to U3 and R1-{ 13
sincev = s)). Otherwise ( = s}), we getdp(s),v) < r;”(s,), which impliesv < s,;; as
well (U2b) (= 11b); furthermore, gap= ;" (u) = r,7(s}) —dp(s), u) (Sinceu = s}) implies
I3 sinces), < v. This completes the proof of I1 and I3.

12 (¢ (v) = ¢) directly follows froms, < v < s, (I1). O

Lemma 6. Consider a highway pat® = (s,...,t) and an edg€w, v) on P such thatu
precedes the meeting poimtAssume that has been appropriatelsettled Then, the edge
(u,v) is not skipped, but relaxed.

Proof. We consider the relaxation of the edge v). Due to Lemma 5, the Invariants 11—
I3 apply after Line 9 has been executed. Now, we consider Lihef the highway query
algorithm.

1 and M2 implys, < u < p < syy1. Hence/d < A\. Thus,u < p < t, < t, (M1). By
H2, we obtair/(u, v) > ¢. Therefore, the edge:, v) is not skipped at this point.

Moreover, we prove that the condition in Line 11 is not fudfillsincg«, v) belongs to a
highway path. This means that the edgev) is not skipped at this point, either. We have to
show thatu ¢ V) Vv ¢ B,. We haves, < u (11). If u < s}, we getu ¢ V; (U3). Otherwise,
we haves, < u < v < p <t, (M3), which yieldsv ¢ B, (H1).

Therefore(u, v) is not skipped, but relaxed. O

Lemma 7. Consider a shortest patk = (s, ..., t) and an edgéu, v) on P. Assume that
u has been appropriatelyettledwith some key:. Furthermore, assume that the edgev)
is not skipped, but relaxed. Thancan be appropriatelyeachedrom v with keyk’'.

Proof. We consider the relaxation of the edge v). Due to Lemma 5, the Invariants 11-13
apply after Line 9 has been executed. Therefore—since) is not skipped, but relaxed—,
the nodev can be reached with the key

k' = (6'(v),0'(v),9ap(v)) := (6(u) + w(u,v),l,gap— w(u,v)).

Thus, A, (K',v), Ay(K',v), and A3(k’, v) hold sinceP is a shortest path and duetq (&, u),
12, and 13.

Consider an arbitrary such thatt # s, < v. To prove A,(v), we have to show that
v € V/. Due to U4, this is true fos, = v. Now, we deal with the remaining case=< u < v.
Sincev =X spy1 = sy, (11, UL), we havei < (. The case/ = 0 is trivial; hence, we
assumg > 0. Since the edgéu, v) is not skipped, we know that Restriction 1 does not
apply. Therefore, we havé&u,v) > ¢, which impliesv € V, C V/ ;. Fori < ¢, we have
V/_, € V! and are done. Far= ¢, we haveu € V, due toA,(u). This impliesv ¢ B, since
Restriction 2 does not apply as wellc V, andv ¢ B, yieldv € V. O

Analogous considerations hold for the backward search.
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A.5 Finding an Optimal Path

Source and target nodesndt are given such that a shortest path freto ¢ exists*®
Definition 4. Astatez is atriple (P, u, ), whereP is a s-t-path,u,w € V N P, andu < .

Definition 5. A statez = (P, u,u) is valid iff all of the following valid_$ate properties are
fulfilled:

— Sl:w(P) = do(s,t)
— S2:P|,_ s contracted, i.e P|,_z = ctr(P|, =)
— S3:P|s_, andP|;_, are paths in the forward and backward search tree, resphctiv

Lemma 8. Consider a valid state = (P, u, ) and an arbitrary noder, s < x < u, on P.
Then,x has been appropriately settled. Analogously for backwasatch.

Proof. Base CaseTrue for s. Induction StepWe assume thaj, s < y < u, has been
appropriately settled and show that succ(y) is appropriately settled as well. Singg z)
belongs to the forward search tree (S3), we know that) is not skipped, but relaxed. The
other prerequisites of Lemma 7 are fulfilled as well (due &itfduction hypothesis and S1).
Thus, we can conclude thatcan be appropriateleachedfrom y. Since(y, z) belongs to
the forward search tree, we know thais alsosettledfrom . O

Lemma 9. If z = (P, u,u) is a valid state, ther is a highway path.

Proof. All labels (e.g.,s)) in this proof refer taP. We show that the highway properties H1
and H2 are fulfilled by induction over the level
Base CaseH2(0) trivially holds since/(u, v) > 0 for anyedge(u, v).
Induction Step (a)H2(¢) — H1(¢). We assume), < t,. (Otherwise, H1) is trivially ful-
filled.) This impliess; # ¢. Consider an arbitrary nodeon P|, _.,,. We distinguish between
three cases.
Case 1:x < u. According to Lemma 84,(x) holds. Hencey € V/ sinces; < .
Case 2 < = = u. We havey := max(u, s;) € V/ (either by Lemma 84,(u) or by U4).
Analogouslyy := min(u,t,) € V). Sinceu <y <z =y 2 wandP|,_z = ctr(P|,—z)
(S2), we can conclude that ¢ B,. Furthermore, we have € V, (due to H2()). Thus,
r eV,
Case 3w =< z. Analogous to Case 1.
Induction Step (b)H1(¢) A H2(¢) — H2(¢+1). Let P denoteexp(P|y, ¢, ¢) and consider an
arbitrary edgédz, y) on P. If (z,y) is part of an expanded shortcut, we héye, y) > ¢+ 1
andz,y € Vi C V. Otherwise(z, y) belongs toP|,, .., which is a subpath oP|,,,,
which impliesz,y € V/ and/(z,y) > ¢ by H1(¢) and H2(). Thus, in any casé(x,y) > ¢,
x,y € V/, and(z,y) is not a shortcut of some level ¢. Hence,P is a path inG/. Now,
consider an arbitrary edde, v), s,y 1 = u < v < ts 1, On P.If (u,v) is a shortcut of some
level > ¢, we directly havef(u, v) > ¢+ 1. Otherwise(u, v) is on P as well. Sinces;,; < v,
we havelp(s),v) > r;”(s,) (U2b). Moreover, S1 implies thdt is a shortest path 6, and,
in particular,ds (s}, v) = w(ﬁls;_w) = dy(s),v). Using the fact thatl5(s,, v) = dp(s),v),
we obtaind,(s), v) > r;7(s}) and, thusp & N, (s}).

Analogously, we have ¢ N, (t,). Hence, the definition of the highway netwaf, ;
implies(u,v) € Epiq. Thus,l(u,v) > €+ 1. 0

Definition 6. A valid state is either &inal state (ifu = @) or a non-finalstate (otherwise).

19 The special case that there is no path frotn ¢ is treated in Section A.1.
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We pick any shortest-t-path P. The state(ctr(P), s, t) is theinitial state. Since forward
and backward search run completely independently of edwddr,cny serialisation of both
search processes will yield exactly the same result. Taerein our proof, we are free
to pick—w.l.o.g.—any order of forward and backward stepg &8sume that at first one
forward and one backward iteration is performed, which iegpthats andt are settled. At
this point, the highway query algorithm is in the initial tgalt is easy to see that the initial
state is a valid state. Due to the following lemma, it is sigfit to prove that a final state is
eventually reached.

Lemma 10. Getting to a final state is equivalent to finding a shortestpath.

Proof. v = w means that forward and backward search meet. Due to Lemma 8aw
conclude that botlh andu are settled with the optimal distancé,(), i.e.,?(u) = do(s,u)
and <K(ﬂ) = dy(u,t). Sinceu = w lies on a shortest path (due to S1), we haye t) =
do(s,u) + do(a@,t). Line 6 impliesd’ < 7(u) + 7(@) = d(s,t). In fact, this means that the
algorithm returnsl’ = d(s, t) since this is already optimal. O

Definition 7. For a valid statez = (P, u, u), the forward direction is said to blelockedif
p = u. Analogously, the backward direction is blocked iK p.

Lemma 11. For a non-final state: = (P, u, u), at most one direction is blocked.
Proof. Sincez is a non-final state, we have< @, which impliesu < p orp < . O
Definition 8. Therankp(z) of a statez = (P, u,u)is|{x € P | u <z <u}|.

Lemma 12. From any non-final state = (P, u,u), another valid state™ is reached at
some point such that(z*) < p(2).

Proof. We pick any non-blocked direction—due to Lemma 11, we knoat there is at
least one such direction. Subsequently, we assume thaotarl direction was picked;
the backward direction can be dealt with analogously.

We haveu < p and observe that all prerequisites of Lemma 6 are fulfillegl tduLem-
mas 9 and 8. Hence, we can conclude that the ¢dge := succ(u)) is not skipped, but
relaxed. Thus, sinc® is a shortest path (SL),can be reached with the optimal distanc_e) due
toLemma7 @,). The fact that the algorithm terminates (Lemma_)S) impleg the queué)
gets empty at some point, i.e., every element has been déteta (). In particular, we can
conclude that is deleted at some point. Singénas been reached with the optimal distance,
it will also be settled with the optimal distance (due to thedfication of the decreaseKey
operation, which guarantees that tentative distancesemer imcreased). Leé®’ denote the
path froms to v in the forward search tree. We set := (P* := P’ o P|,_,v, ). We have
w(PT) = w(P") + w(P|y—t) = do(s,v) + do(v,t) = do(s,t) (= S1). S2 is fulfilled since
P*|,_4 is a subpath of|, ;. S3 holds due to the construction Bf". Hencez" is valid.
Furthermorep(z*) = p(z) — 1. 0

Theorem 5. The highway query algorithm finds a shortestpath.

Proof. From Lemma 12 and the fact that the codomain of the rank fonas finite, it
follows that eventually a final state is reached, which isiegant to finding a shortest¢-
path due to Lemma 10. O
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A.6 Distance Table Optimisation

To prove the correctness of the distance table optimisatverintroduce the following new
lemma and adapt a few definitions and proofs from Section é\thé new situation.

Lemma 13. Consider a valid state = (P, u,u) withu < s,. Whenu's edges are relaxed,
neither the condition in Line 7a nor the condition in Line ligdulfilled.

Proof. Due to Lemma 8y has been appropriately settled with some keye distinguish
between two cases.

Case L < sp. Fromsyu) = sp,) Ju < st (As(k,u), L2), it follows that/(u) < L (U1).
Hence, the condition in Line 7a is not fulfilled. Furthermonge haves, < u < sy, after
Line 9 has been executed (Lemma 5: 11). Thus; L, which implies that the condition in
Line 11ais not fulfilled as well.

Case 2:s;, = u < s,. First, we show that the condition in Line 7a is not fulfilléd/e
assumé(u) = L. (Otherwise, the condition cannot be fulfilled.) Due4g(k, u), we have
gapu) = oo. Hence, gap= r;,,(u) = r;’(u) = oo by R1 sinceu ¢ V; (U3). Now, we
prove that the condition in Line 11a is not fulfilled. We assuim= LAC > ((u). (Otherwise,
the condition cannot be fulfilled.) Due to Line 9, we get gap,”(u) = ;" (u) = oo, (as
above). O

Definition 6. A valid state is either éinal state (ifu = w or s, < uAw =< t}) or anon-final
state (otherwise).

Lemma 10.Getting to a final state is equivalent to finding a shortestpath.

Proof. In the proof of this lemma in Section A.5, we have already d&#h the case, = .
Now, consider the new case< @ A s7, < u Au =< t;. We show that’, is added to the
set]. Sinces; =< u, s has been appropriately settled with some kéglue to Lemma 8).
We consider the attempt to relax the edgg, v := succ(s’)) and distinguish between two
cases.

Case lisp = s,. 0 =0 (v) (12), s, = s, < v, and? (v) < L (L1) imply ¢ = 7 (v) = L.
Furthermore A, (k, s} ) and the assumption of Case 1 yiéld,) = /(s}) < L = (. In
addition, gap= oo, # oo; by 13 (sinces) < v), the fact that’, € V] (U4), and R2. Hence,
the condition in Line 11a is fulfilled so tha} is added tol .

Case 2:s;, < s,. By Ay(k, s}), As(k, s}), the assumption of Case 2, afts’,) < L (L1),
we getl(s,) = ((s},) = L and gaps),) = oo. Thus, gap= r;’(s}) = 0oy # oo; (R2).
Hence, the condition in Line 7a is fulfilled so th4tis added tol .

Analogously, we can prove thdf is added to the sef . SinceP is a highway path
(due to Lemma 9), the subpatt.; ., is a path inG’;, and, thusdy(s7,t}) = dr(sy, 7).
Hence,w(P) = dy(s, s}) + dp(sy,t;) + do(t},t) is the length of a shortestt-path and,
since the algorithm finds a path with a Ieng{h?(sg) +dp(sh,th) + 7(&) and since
7(52) = dy(s, s7) and?(t’L) = dy(t},t) (due to Lemma 84;), we can conclude that a
shortest-¢-path is found. O

Definition 7’. For a valid statez = (P, u,u), the forward direction is said to blelockedif
p =X uors; = u. Analogously, the backward direction is blocked ik p oru < ¢/ .

Lemma 11.For a non-final state: = (P, u, @), at most one direction is blocked.

Proof. Sincez is a non-final state, we have < w and (v < s V t, < u). To obtain a
contradiction, let us assume that both directions are leldcke., { < u or ¢, < u) and
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(w <= poru =< t}). Consider the case < v andu < . Hencep < u < uw < t7. Due to
M3, we can conclude thaf, < p < u. Sinces;, < v andu < t}, we have a contradiction.
The remaining three cases are analogous or straightforward O

Lemma 12. From any non-final state = (P, u,u), another valid state™ is reached at
some point such that(z*) < p(2).

Proof. The proof of this lemma in Section A.5 still works since theled two lines (7a and
11a) have no effect due to Definition 7" and Lemma 13. O

B Implementation

The graph is represented adjacency arraywhich is a very space-efficient data structure
that allows fast traversal of the graph. There are two ari@ys for the nodes and one for the
edges. The edgés, v) are grouped by the source nodand store only the ID of the target
nodev and the weightv(u, v). Each node: stores the index of its first outgoing edge in the
edge array. In order to allow a search in the backward grapthawve to store an edde, v)
also as backward edde, «) in the edge group of node In order to distinguish between
forward and backward edges, each edge has a forward and wdrdckag. By this means,
we can also store two-way edggs, v} (which make up the large majority of all edges in a
real-world road network) in a space-efficient way: we keely one copy of(u, v) and one
copy of (v, u), in each case setting both direction flags.

The basic adjacency array has to be extended in order tqooaie the level data that is
specific to highway hierarchies. In addition to the index&f first outgoing edge, each node
u stores its level-0 neighbourhood radiugu). Moreover, for each node, all outgoing
edges(u, v) are grouped by their level(u, v). Between the node and the edge array, we
insert another layer: for each nodeand each level > 0 thatu belongs to, there is lzvel
nodeuw, that stores the radius(«) and the index of the first outgoing edge v) in level /.

All level nodes are stored in a single array. Each nodeeps the index of the level node
uy. Figure 16 illustrates the graph representation.

nodes To To
i i
level nodes e (T2 T3 T4 | T1 T2 (T3
| | \
edges

Fig. 16.An adjacency array, extended by a level-node layer.

To obtain a robust implementation, we include extensiveisdency checks in assertions
and perform experiments that are checked against referemmgementations, i.e., queries
are checked against Dijkstra’s algorithm and the fast egssing algorithm is checked
against a naive implementation.
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C Experiments

In addition to the experiments presented in Section 6.3, s ltonsidered many more
combinations of neighbourhood size, contraction rate,;ramdber of levels. The results are
given in Table 5 and 6.

Table 5. Preprocessing and query performance for the European edaark depending on the contraction ratend the
neighbourhood sizé&l. We do not use a distance table, but repeat the construatimess until the topmost level is empty
or the hierarchy consists of 15 levels.

contr. nbh. | PREPROCESSING _ QUERY

ratec  sizefl tlme @overhead/@deg. time #settled #relaxed
[min] node [byte] [ms] nodes edges
30 83 30 3.2391.73 472326 1023944

40 83 28 3.2267.57 334287 711082

50 87 27 3.2188.55 242787 506543

0.5 60 86 27 3.2135.27 177558 362748
70 87 26 3.2101.36 135560 271324

80 89 26 3.1 73.40 99857 196150

90 87 25 3.1 55.02 75969 146247

30 15 28 3.7 548 6396 23612

40 15 28 3.7 262 3033 11315

50 17 27 3.6 213 2406 8902

1.0 60 18 27 3.6 193 2201 8001
70 19 26 3.6 1.80 2151 7474

80 20 26 3.6 179 2193 7392

90 22 26 3.6 1.78 2221 7 268

30 11 28 3.8 193 1830 9281

40 12 28 3.8 1.72 1628 7672

50 13 27 3.7 156 1593 6975

1.5 60 14 27 3.7 153 1645 6697
70 15 27 3.7 151 1673 6590

80 17 27 3.7 151 1726 6719

920 18 27 3.7 154 1782 6 655

30 11 29 4.0 1.85 1542 8913

40 11 29 3.9 1.64 1475 7646

50 12 28 3.9 148 1470 6785

2.0 60 14 28 3.8 146 1506 6650
70 15 28 3.8 1.45 1547 6649

80 16 27 3.8 149 1611 6935

90 17 27 3.8 153 1675 6988

30 11 30 41 196 1489 9175

40 11 29 4.0 1.70 1453 7822

50 12 29 4.0 158 1467 7119

2.5 60 14 29 3.9 157 1493 7035
70 15 28 3.9 154 1536 6905

80 16 28 3.9 155 1583 7094

90 18 28 3.9 158 1645 7204
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Table 6. Preprocessing and query performance for the European etawrk depending on the number of levels and the
neighbourhood sizél. In the topmost level, a distance table is used.

nbh PREPROCESSING QUERY
#levels sizeH time @overhead/deeg time #settled #relaxed
[min] node [byte] 1[ms] nodes edges

40 14 60 3.90.67 691 2398

50 13 40 3.90.77 818 2892

5 60 14 32 3.80.87 938 3361
70 15 30 3.80.96 1058 3837

80 16 28 3.81.05 1165 4278

90 17 28 3.81.13 1269 4697

30 12 48 4.00.75 709 2531

40 11 33 3.90.87 867 3171

50 12 29 3.90.99 1015 3759

6 60 13 28 3.81.10 1157 4299
70 15 28 3.81.21 1292 4837

80 16 28 3.81.30 1414 5311

90 17 27 3.81.40 1521 5817

30 10 34 4.00.93 852 3195

40 11 29 3.91.07 1025 3894

50 12 28 3.91.20 1187 4538

7 60 13 28 3.81.32 1344 5166
70 15 28 3.81.39 1462 5689

80 16 27 3.81.47 1578 6179

90 18 27 3.81.53 1668 6661

30 10 30 4.01.14 991 3853

40 11 29 3.91.27 1171 4624

50 12 28 3.91.36 1321 5283

8 60 14 28 3.81.43 1455 5887
70 15 28 3.81.46 1546 6338

80 16 27 3.81.48 1611 6935

90 18 27 3.81.53 1675 6988

30 10 30 4.01.35 1123 4532

40 11 29 3.91.45 1289 5338

9 50 12 28 3.91.48 1417 5931
60 14 28 3.81.47 1506 6429

70 15 28 3.81.46 1547 6649

30 10 29 4.01.54 1241 5214

10 40 11 29 3.91.57 1380 6012
50 12 28 3.91.51 1468 6470

60 14 28 3.81.46 1506 6650

30 10 29 4.01.67 1326 5847

11 40 11 29 3.91.65 1445 6627
50 13 28 3.91.49 1470 6785
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