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Abstract. Highway hierarchies exploit hierarchical properties inherent in real-world road networks to
allow fast and exact point-to-point shortest-path queries. A fast preprocessing routine iteratively performs
two steps: first, it removes edges that only appear on shortest paths close to source or target; second, it
identifies low-degree nodes and bypasses them by introducing shortcut edges. The resulting hierarchy of
highway networks is then used in a Dijkstra-like bidirectional query algorithm to considerably reduce the
search space size without losing exactness. The crucial fact is that ‘far away’ from source and target it is
sufficient to consider only high-level edges.
Various experiments with real-world road networks confirm the performance of our approach. On a 2.0 GHz
machine, preprocessing the network of Western Europe, which consists of about 18 million nodes, takes
13 minutes and yields 48 bytes of additional data per node. Then, random queries take 0.61 ms on average.
If we are willing to accept slower query times (1.10 ms), the memory usage can be decreased to 17 bytes
per node. We can guarantee that at most 0.014% of all nodes arevisited during any query. Results for US
road networks are similar.
Highway hierarchies can be combined with goal-directed search, they can be extended to answer many-
to-many queries, and they are a crucial ingredient for otherspeedup techniques, namely for transit-node
routing and highway-node routing.

1 Introduction

Computing fastest routes in road networks from a given source to a given target location is
one of the showpieces of real-world applications of algorithmics. Many people frequently
use this functionality when planning trips with their cars.There are also many applications
like logistic planning or traffic simulation that need to solve a huge number of shortest-path
queries. In principle we could use Dijkstra’s algorithm [1]. But for large road networks this
would be far too slow. Therefore, there is considerable interest in speedup techniques for
route planning. Most approaches, including ours, assume that the road network isstatic,
i.e., it does not change very often. Then, we can allow some preprocessing that generates
auxiliary data that can be used to accelerate all subsequentqueries. The preprocessing should
be sufficiently fast to deal even with very large road networks, the auxiliary data should
occupy only a moderate amount of space, and the queries should be as fast as possible.

1.1 Related Work

A detailed overview on shortest-path speedup techniques can be found in [2].

Bidirectional Search.A classical technique isbidirectional searchwhich simultaneously
searches forward from the source and backwards from the target until the search frontiers
meet. Many more advanced speedup techniques use bidirectional search as an ingredient.

Goal Direction. Road networks allow effective goal-directed search usingA∗ search[3]:
lower bounds define a vertex potential that directs search towards the target. This approach
was recently shown to be very effective if lower bounds are computed using precomputed
shortest-path distances to a carefully selected set of about 20 Landmarknodes [4, 5] using
theTriangle inequality (ALT).

The Precomputed Cluster Distances (PCD) technique [6] alsouses precomputed dis-
tances for goal-directed search, yielding speedups comparable to ALT, but using less space.



The network is partitioned into clusters and the shortest connection between any pair of
clusters is precomputed. Then, during a query, upper and lower bounds can be derived that
can be used to prune the search.

Another goal-directed approach is to precompute for each edge ‘signposts’ that support
the decision whether the target can possibly be reached on a shortest path via this edge.
During a query only promising edges have to be considered. Various instantiations of this
general idea have been presented [7–13]. While these methods exhibit good query perfor-
mance, preprocessing times are quite large and so far no experimental results for the largest
publicly available road networks have been published.

Separators.Perhaps the most well known property of road networks is thatthey are al-
most planar, i.e, techniques developed for planar graphs will often also work for road net-
works. Queries accurate within a factor(1 + ǫ) can be answered in near constant time us-
ing O((n log n)/ǫ) space and preprocessing time [14]. Recently, this approachhas been
efficiently implemented and experimentally evaluated on a road network with one million
nodes [15]. While the query times are very good (less than 20µs for ǫ = 0.01), the pre-
processing time and space consumption are quite high (2.5 hours and 2 GB, respectively).
UsingO(n log3 n) space and preprocessing time, query timeO(

√
n log n) can be achieved

[16] for directed planar graphs without negative cycles.
Another previous approach is theseparator-based multi-level method[7, 17]. The idea is

to use a set of nodesV1 whose removal partitions the graphG = G0 into small components.
Now consider theoverlay graphG1 = (V1, E1) where edges inE1 areshortcutscorrespond-
ing to shortest paths inG that do not have inner nodes that belong toV1. Routing can now
be restricted toG1 and the components containings and t respectively. This process can
be iterated yielding a multi-level method. A limitation of this approach is that the graphs
at higher levels become much more dense than the input graphs, thus limiting the benefits
gained from the hierarchy. Also, computing small separators can become quite costly for
large graphs.

Reach-Based Routing / REAL.Let R(v) := maxs,t∈V Rst(v) denote thereachof nodev
whereRst(v) := min(d(s, v), d(v, t)). Gutman [18] observed that a shortest-path search can
be stopped at nodes with a reach too small to get to source or target from there. Goldberg et
al. [19, 20] have considerably strengthened this approach by introducing various improve-
ments, in particular a combination with ALT, yielding theREAL algorithm. Its query per-
formance is similar to our highway hierarchies, while the preprocessing times are usually
worse; a comparison can be found in Section 6.7.

Heuristics. In the last decades, commercial navigation systems were developed which had to
handle ever more detailed descriptions of road networks on rather low-powered processors.
Vendors resolved to heuristics still used today that do not give any performance guarantees:
A∗ search with estimates on the distance to the target rather than lower bounds or heuristic
hierarchical approaches [21, 22].

1.2 Our Contributions

Our exacthighway hierarchies (first published in [23, 24]) are inspired byheuristichier-
archical approaches. It is a bidirectional technique. While the search is inside some local
area around source or target, all roads of the network are considered. Outside these areas,
however, the search is restricted to ‘important’ roads. This general idea can be iterated and
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applied to a hierarchy consisting of several levels. The crucial point is the definition of ‘im-
portant streets’. In previous heuristic variants, this definition is based on a classification
of the streets according to their type (motorway, national road, regional road,. . .). Such a
classification requires manual tuning of the data and a delicate trade-off between speed and
suboptimality of the computed routes. In our exact variant,however, nodes and edges are
classified fully automatically in a preprocessing step in such a way that all shortest paths are
preserved. By this means, we win not only exactness, but alsogreater speed since we can
build high-performance hierarchies consisting of many levels without worrying about the
quality of the results.

In the preprocessing phase, we alternate between two procedures: edge reduction and
node reduction.Edge reductionremoves non-highway edges, i.e., edges that only appear on
shortest paths close to source or target. More specifically,every nodev has a neighbourhood
radiusr(v) we are free to choose. An edge(u, v) is a highway edge if it belongs to some
shortest path from a nodes to a nodet such that(u, v) is neither fully contained in the
neighbourhood ofs nor in the neighbourhood oft, i.e.,d(s, v) > r(s) andd(u, t) > r(t). In
all our experiments, neighbourhood radii are chosen such that each neighbourhood contains
a certain numberH of nodes.H is a tuning parameter that can be used to control the rate at
which the network shrinks.

Node reduction(also calledcontraction) removes low degree nodes by bypassing them
with newly introduced shortcut edges. In particular, all nodes of degree one and two are
removed by this process.

The query algorithm is very similar to bidirectional Dijkstra search with the difference
that certain edges need not be expanded when the search is sufficiently far from source or
target. Highway hierarchies are the first speedup techniquethat was able handle the largest
available road networks giving query times measured in milliseconds. There are two main
reasons for this success: Under the above reduction routines, the road network shrinks in
a geometric fashion from level to level and remains sparse and near planar, i.e., levels of
the highway hierarchy are in some senseself similar. The other key property is that prepro-
cessing can be done using limited local searches starting from each node. Preprocessing is
also the most nontrivial aspect of highway hierarchies. In particular, long edges (e.g. long-
distance ferry connections) make simple minded approachesfar too slow. Instead we use
fast heuristics that compute a superset of the set of highwayedges.

Some further optimisations allow to drop the average query times below one millisecond
on a 2.0 GHz machine—even for a road network with more than 30 million nodes. One of
these optimisations is an all-pairs distance table that we precompute for the topmost levelL
so that forward and backward search can be stopped as soon as all entrance points to levelL
have been found. Then, the remaining gap can be bridged by performing a moderate number
of simple table lookups.

We cannot give a general worst-case bound better than Dijkstra’s. So far, this drawback
applies to all other exact speedup techniques, where an implementation is available, as well.
However, in contrast to most of them, we can provideper-instance worst-case guarantees,
i.e., for a given graph, we can determine an upper bound for the search space size ofany
possible point-to-point query performing only a linear number of unidirectional highway
queries.

1.3 Subsequent Work

Various other speedup techniques were inspired by our highway hierarchies or even use them
as their starting point. Goldberg et al. adopted the introduction of shortcuts in order to im-
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prove both preprocessing and query times of the REAL algorithm. There is a many-to-many
variant [25] and a combination with ALT [26]. Furthermore, the fastest implementation of
transit-node routing [27, 28] allowing query times of a few microseconds is also based on
our highway hierarchies. The same applies to highway-node routing [29], a very recent
approach that can be used to handle dynamic scenarios, traffic jams for example. An alter-
native, heuristic approach to dealing with dynamic scenarios, which is based on highway
hierarchies as well, has been developed by Nannicini et al. [30].

1.4 Outline

After beginning with some preliminaries in Section 2, we formally define thehighway hi-
erarchyof a given graph in Section 3. Then, Section 4 deals with both procedures of the
preprocessing phase, the edge reduction (i.e., theconstructionof a highway network) and
the node reduction (i.e., thecontractionof a highway network). The basic query algorithm
is introduced in Section 5. Furthermore, several optimisations are presented and some ad-
vanced topics, like outputting complete path descriptionsand dealing with turning restric-
tions, are discussed. In Section 6, we present a wide range ofexperimental results, dealing
with various real-world road networks, parameter settings, and scenarios of application. We
do not only give average query times, but also a detailed analysis of queries with differ-
ent degrees of difficulty, per-instance worst-case upper bounds, and comparisons to other
speedup techniques.

2 Preliminaries

Graphs and Paths.We expect adirectedgraphG = (V, E) with n nodes andm edges(u, v)
with nonnegativeweightsw(u, v) as input. Thelength w(P ) of a pathP is the sum of
the weights of the edges that belong toP . P ∗ = 〈s, . . . , t〉 is a shortest pathif there is
no pathP ′ from s to t such thatw(P ′) < w(P ∗). The distanced(s, t) betweens and t
is the length of a shortest path froms to t or ∞ if there is no path froms to t. If P =
〈s, . . . , s′, u1, u2, . . . , uk, t

′, . . . , t〉 is a path froms to t, thenP |s′→t′ = 〈s′, u1, u2, . . . , uk, t
′〉

denotes thesubpathof P from s′ to t′. We useu ≺P v to denote that a nodeu precedes1 a
nodev on a pathP = 〈. . . , u, . . . , v, . . .〉; we just writeu ≺ v if the pathP that is referred
to is clear from the context.

Dijkstra’s Algorithm.Dijkstra’s algorithm [1] can be used to solve thesingle-source shortest-
path (SSSP) problem, i.e., to compute the shortest paths from a single source node s to all
other nodes in a given graph. It is covered by virtually any textbook on algorithms, e.g. [31,
32], so that we confine ourselves to introducing our terminology: Starting with the source
nodes as root, Dijkstra’s algorithm grows ashortest-path treethat contains shortest paths
from s to all other nodes. During this process, each node of the graph isunreached, reached,
or settled. A node that already belongs to the tree issettled. If a nodeu is settled, a shortest
pathP ∗ from s to u has been found and the distanced(s, u) = w(P ∗) is known. A node that
is adjacent to a settled node isreached. Note that a settled node is also reached. If a nodeu
is reached, a pathP from s to u, which might not be the shortest one, has been found and
a tentative distanceδ(u) = w(P ) is known. A nodeu that is not reached isunreached; for
such a node, we haveδ(u) =∞.

In case that the shortest paths in a graph are not unique, Dijkstra’s algorithm can be
easily modified to determineall shortest paths betweens and any nodeu ∈ V . This means
that not a shortest-path tree is grown, but a shortest-pathdirected acyclic graph(DAG).

1 This doesnot necessarily mean thatu is thedirect predecessor ofv.

4



A bidirectionalversion of Dijkstra’s algorithm can be used to find a shortestpath from a
given nodes to a given nodet. Two Dijkstra searches are executed in parallel: one searches
from the source nodes in the original graphG = (V, E), also calledforward graphand
denoted as

−→
G = (V,

−→
E ); another searches from the target nodet backwards, i.e., it searches

in thereverse graph
←−
G = (V,

←−
E ),
←−
E := {(v, u) | (u, v) ∈ E}. The reverse graph

←−
G is also

calledbackward graph. When both search scopes meet, a shortest path froms to t has been
found.

3 Highway Hierarchy

A highway hierarchyof a graphG consists of several levelsG0, G1, G2, . . . , GL, where the
number of levelsL + 1 is given. We will provide an inductive definition of the levels:

– Base case (G′0, G0): level 0 (G0 = (V0, E0)) corresponds to the original graphG; fur-
thermore, we defineG′0 := G0.

– First step (G′ℓ → Gℓ+1, 0 ≤ ℓ < L): for givenneighbourhood radii, we will define the
highway networkGℓ+1 of a graphG′ℓ.

– Second step (Gℓ → G′ℓ, 1 ≤ ℓ ≤ L): for a given setBℓ ⊆ Vℓ of bypassablenodes, we
will define thecoreG′ℓ of levelℓ.

First step (highway network). For each nodeu, we choose nonnegativeneighbourhood
radii r→ℓ (u) andr←ℓ (u) for the forward and backward graph, respectively. To avoid some
case distinctions, we setr→ℓ (u) andr←ℓ (u) to infinity for u 6∈ V ′ℓ (Radius Property R1) and
for ℓ = L (R2). In all other cases, neighbourhood radii have to be6=∞ (R3).

The level-ℓ neighbourhoodof a nodeu ∈ V ′ℓ isN→ℓ (u) := {v ∈ V ′ℓ | dℓ(u, v) ≤ r→ℓ (u)}
with respect to the forward graph and, analogously,N←ℓ (u) := {v ∈ V ′ℓ | d←ℓ (u, v) ≤
r←ℓ (u)} with respect to the backward graph, wheredℓ(u, v) denotes the distance fromu to v

in the forward graphGℓ andd←ℓ (u, v) := dℓ(v, u) in the backward graph
←−
Gℓ.

Thehighway networkGℓ+1 = (Vℓ+1, Eℓ+1) of a graphG′ℓ is defined by the setEℓ+1 of
highway edges: an edge(u, v) ∈ E ′ℓ belongs toEℓ+1 iff there are nodess, t ∈ V ′ℓ such that
the edge(u, v) appears in some shortest path〈s, . . . , u, v, . . . , t〉 from s to t in G′ℓ with the
property thatv 6∈ N→ℓ (s) andu 6∈ N←ℓ (t). Figure 1 gives an example. The setVℓ+1 is the
maximal subset ofV ′ℓ such thatGℓ+1 contains no isolated nodes.

N←ℓ (t)N→ℓ (s)

s t

Highway

Fig. 1.A shortest path from a nodes to a nodet. Edges that leave the neighbourhood ofs or t and edges that are completely
outside the neighbourhoods ofs andt arehighway edges.

Second step (core). For a given setBℓ ⊆ Vℓ of bypassablenodes, we define the setSℓ

of shortcut edgesthat bypass the nodes inBℓ: for each pathP = 〈u, b1, b2, . . . , bk, v〉
with u, v ∈ Vℓ \ Bℓ and bi ∈ Bℓ, 1 ≤ i ≤ k, the setSℓ contains an edge(u, v) with
w(u, v) = w(P ). The core G′ℓ = (V ′ℓ , E

′
ℓ) of level ℓ is defined in the following way:
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V ′ℓ := Vℓ \ Bℓ andE ′ℓ := (Eℓ ∩ (V ′ℓ × V ′ℓ )) ∪ Sℓ. This definition is illustrated in Figure 2.
Removing all core nodes fromGℓ yields connectedcomponents of bypassed nodes.

The level ℓ(e) of an edgee is max{ℓ | e ∈ Eℓ ∪ Sℓ}. For an edge(u, v), we usually
write justℓ(u, v) instead ofℓ((u, v)). The highway hierarchy can be interpreted as a single
graphG := (V, E ∪⋃L

i=1 Si) where each node and each edge has additional information on
its membership in the various setsVℓ, V

′
ℓ , Bℓ, Eℓ, E

′
ℓ, Sℓ.

contracted network ("core")
= non−bypassed nodes
+ shortcuts

bypassed
nodes

Fig. 2. The core of a highway network consists of the subgraph induced by the set of non-bypassed nodes and additional
shortcut edges.

4 Construction

4.1 Computing the Highway Network

Neighbourhood Radii.Let us fix any rule that decides which element Dijkstra’s algorithm
removes from the priority queue in the case that there is morethan one queued element with
the smallest key. Then, during a Dijkstra search from a givennodeu, all nodes are settled
in a fixed order. TheDijkstra rank rku(v) of a nodev is the rank ofv w.r.t. this order.u has
Dijkstra rank rku(u) = 0, the closest neighbourv1 of u has Dijkstra rank rku(v1) = 1, and
so on.

We suggest the following strategy to set the neighbourhood radii. For this paragraph, we
interpret the graphG′ℓ as an undirected graph, i.e., a directed edge(u, v) is interpreted as
an undirected edge{u, v} even if the edge(v, u) does not exist in the directed graph. Let
d↔ℓ (u, v) denote the distance between two nodesu andv in the undirected graph. For a given
parameterHℓ, for any nodeu ∈ V ′ℓ , we setr→ℓ (u) := r←ℓ (u) := d↔ℓ (u, v), wherev is the
node whose Dijkstra rank rku(v) (w.r.t. the undirected graph) isHℓ. For any nodeu 6∈ V ′ℓ ,
we setr→ℓ (u) := r←ℓ (u) :=∞ (to fulfil R1).

Originally, we wanted to apply the above strategy to the forward and backward graph one
after the other in order to define the forward and backward radius, respectively. However, it
turned out that using the same value for both forward and backward radius yields a similar
good performance, but needs only half the memory.

Fast Construction: Outline.Given a graphG′ℓ, we want to construct a highway network
Gℓ+1. We start with an empty set of highway edgesEℓ+1. For each nodes0 ∈ V ′ℓ , two
phases are performed: the forward construction of a partialshortest-path DAGB (containing
all shortest paths froms0 to any nodeu ∈ B) and the backward evaluation ofB. The
construction is done by an SSSP search froms0; during the evaluation phase, paths from
the leaves ofB to the roots0 are traversed and for each edge on these paths, it is decided
whether to add it toEℓ+1 or not. The crucial part is the specification of an abort criterion for
the SSSP search in order to restrict it to a ‘local search’.
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N→ℓ (s1)

N←ℓ (p)

s0 s1 pu v w

Fig. 3. Abort criterion.

Phase 1: Construction of a Partial Shortest-Path DAG.A Dijkstra search froms0 is exe-
cuted. In order to keep track of all shortest paths, for each node in the partial shortest-path
DAG B, we manage a list of (tentative) parents: when an edge(u, v) is relaxed such that
dℓ(s0, u) + w(u, v) = δ(v), thenu is added to the list of tentative parents ofv. During the
search, a reached node is either in the stateactiveor passive. The source nodes0 is active;
each node that is reached for the first time (insert) and each reached node that is updated
(decreaseKey) is set to active iff any of its tentative parents is active. When a nodep is set-
tled, we consider all shortest pathsP ′ from s0 to p as depicted in Figure 3. The state ofp is
set to passive if

∀ shortest pathsP ′ = 〈s0, . . . , p〉 :

s1 ≺ p ∧ p 6∈ N→ℓ (s1) ∧ s0 6∈ N←ℓ (p) ∧ |P ′ ∩ N→ℓ (s1) ∩ N←ℓ (p)| ≤ 1 (1)

When no active unsettled node is left, the search isabortedand the growth ofB stops.
An example for Phase 1 of the construction is given in Figure 4. The intuitive reason

for s1 (which is the first successor ofs0 on the pathP ′) to appear in the abort criterion is

s1

s0s1

p

s1

p

p

18

1716

22

19

23

20 21

14

13

15

2524

10

9

11

67

4

0

N→ℓ (s1)
N→ℓ (s1)

N→ℓ (s1)

N←ℓ (p)

N←ℓ (p)

N←ℓ (p)

Fig. 4. An example of Phase 1 of the construction. The weight of an edge is the length of the line segment that represents
the edge in this figure. The neighbourhood sizeHℓ is 3. An SSSP search is performed froms0. The abort criterion applies
three times: the involved nodess1 andp and the corresponding neighbourhoods are marked incyan, magenta, andbrown,
respectively. In thebrown case, the intersection of the concerned neighbourhoods contains exactly one element; in the other
two cases, the intersections are empty. All edges that belong tos0’s partial shortest-path tree are coloured: edges that leave
active nodes areblue, edges that leave passive nodes aregreen.
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the following: When we deactivate a nodep during the search froms0, we decide to ignore
everything that lies behindp. We are free to do this because the abort criterion ensures that
s1 can take ‘responsibility’ for the things that lie behindp, i.e., further important edges will
be added during the search froms1. (Of course,s1 will refer a part of its ‘responsibility’ to
its successor, and so on.)

Phase 2: Selection of the Highway Edges.During Phase 2, exactly all edges(u, v) are
added toEℓ+1 that lie on paths〈s0, . . . , u, v, . . . , p〉 in the partial shortest-path DAGB with
the property thatv 6∈ N→ℓ (s0) andu 6∈ N←ℓ (p). The example from Figure 4 is continued in
Figure 5.

.

s0.

t0

.

t0

p

18

1716

22

19

23

20 21

14

13

15

2524

9

11

67

t0

t0

t0

N→ℓ (s0)
N←ℓ (t0)

N←ℓ (t0)

N←ℓ (t0)

N←ℓ (t0)

N←ℓ (t0)

Fig. 5. An example of Phase 2 of the construction.s0’s partial shortest path tree has five leavest0, which are marked in
different colours. Theedgesthat are added toEℓ+1 are highlighted.

Theorem 1. An edge(u, v) ∈ E ′ℓ is added toEℓ+1 by the construction algorithm iff it
belongs to some shortest pathP = 〈s, . . . , u, v, . . . , t〉 andv 6∈ N→ℓ (s) andu 6∈ N←ℓ (t).

Proof. In this proof, we will refer to the following Neighbourhood Property N1 that follows
directly from the neighbourhood definition: Consider a shortest path〈s, . . . , u, . . . , t〉 in G′ℓ.
Then,t ∈ N→ℓ (s) impliesu ∈ N→ℓ (s) ands ∈ N←ℓ (t) impliesu ∈ N←ℓ (t).
⇐) Consider the nodes0 on P |s→u such thatv 6∈ N→ℓ (s0) anddℓ(s0, v) is minimal.

Such a nodes0 exists because the conditionv 6∈ N→ℓ (s0) is always fulfilled fors0 = s.
The direct successor ofs0 on P is denoted bys1. Note thatv ∈ N→ℓ (s1) [*]. We show
that the edge(u, v) is added toEℓ+1 when Phase 1 and 2 are executed froms0. Due to the
specification of Phase 2, it is sufficient to prove that after Phase 1 has been completed, the
partial shortest-path DAGB contains a nodep ∈ P |s0→t such thatv � p andu 6∈ N←ℓ (p).

If t ∈ B, this statement is obviously fulfilled forp := t sincev � t andu 6∈ N←ℓ (t).
Otherwise (t 6∈ B), the search is not continued from some nodet0 ≺ t on P |s0→t. We can
conclude thatt0 is passive because, otherwise, its successor onP |s0→t would adopt its active
state and the search would not be aborted at that time. Sinces0 is active andt0 is passive,
eithert0 or one of its ancestors must have been switched from active topassive. Letp denote
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the first passive node onP |s0→t = 〈s0, s1, . . . , p, . . . , t0, . . . , t〉. Due to the definition of the
abort condition, we haves1 ≺ p∧p 6∈ N→ℓ (s1)∧s0 6∈ N←ℓ (p)∧|P ′∩N→ℓ (s1)∩N←ℓ (p)| ≤ 1
[**], where P ′ = P |s0→p. The facts thatv ∈ N→ℓ (s1) [see *] andp 6∈ N→ℓ (s1) [see **]
imply v ≺ p due to N1. In order to obtain a contradiction, we assumeu ∈ N←ℓ (p). Since
s0 6∈ N←ℓ (p) [see **], this impliess0 ≺ u by N1. Hence,s1 � u. Becausev ∈ N→ℓ (s1)
[see *], we obtainu ∈ N→ℓ (s1) due to N1. Similarly, we getv ∈ N←ℓ (p) sincev ≺ p and
u ∈ N←ℓ (p). Thus,{u, v} ⊆ P ′∩N→ℓ (s1)∩N←ℓ (p). Therefore,|P ′∩N→ℓ (s1)∩N←ℓ (p)| ≥ 2,
which is a contradiction to [**]. We can conclude thatu 6∈ N←ℓ (p).
⇒) Since each path〈s0, . . . , u, v, . . . , p〉 in B is a shortest path, the claim follows directly

from the specification of Phase 2. ⊓⊔

Algorithmic Details: Phase 1.For an efficient implementation, we keep track of aborder
distanceb(x) and areference distancea(x) for each nodex in B. Along a pathP ′ as depicted
in Figure 3, we assignb(x) the distance from the root to the border of the neighbourhoodof
s1 as soon ass1 is settled. This value is passed to all successors on the path, which allows to
determine the first nodew outsideN→ℓ (s1), i.e., its direct predecessorv is the last node inside
N→ℓ (s1). In order to fulfil the abort condition, we have to make sure thatv is the only node on
P ′ withinN→ℓ (s1) ∩N←ℓ (p). Therefore, we want to check whetherv’s direct predecessoru
belongs toN←ℓ (p). To allow an easy check, we determine, store, and propagate the reference
distance froms0 to u as soon asw is settled. Knowing the reference distancedℓ(s0, u), the
current distancedℓ(s0, p) andp’s neighbourhood radiusr←ℓ (p), checkingu 6∈ N←ℓ (p) is then
straightforward. If there are several shortest paths froms0 to some nodex, we determine
appropriate maxima of the involved border and reference distances.

More formally, for any nodex in B, π(x) denotes the set of parent nodes inB. To
avoid some case distinctions, we setπ(s0) := {s0}, i.e., the root is its own parent. For the
root s0, we setb(s0) := 0 anda(s0) := ∞. For any other nodex 6= s0, we defineb′(x) :=
dℓ(s0, x)+r→ℓ (x) if s0 ∈ π(x), and 0, otherwise;b(x) := max({b′(x)}∪{b(y) | y ∈ π(x)});
a′(x) := max{a(y) | y ∈ π(x)}; anda(x) := max{dℓ(s0, u) | y ∈ π(x) ∧ u ∈ π(y)} if
a′(x) =∞∧ dℓ(s0, x) > b(x), anda′(x), otherwise.

Then, we can easily check the following abort criterion at a settled nodep:

a(p) + r←ℓ (p) < dℓ(s0, p) (2)

Lemma 1. (2) implies (1).

Proof. We prove the contraposition “¬ (1) implies¬ (2)”, i.e., we assume that there is some
shortest pathP ′ from s0 to p such thatp � s1∨p ∈ N→ℓ (s1)∨s0 ∈ N←ℓ (p)∨|P ′∩N→ℓ (s1)∩
N←ℓ (p)| ≥ 2 and show thata(p) + r←ℓ (p) ≥ dℓ(s0, p).
Case 1:p � s1. If p = s0, thena(p) = ∞, which yields¬ (2). Otherwise (p = s1),
b(p) ≥ dℓ(s0, p) + r→ℓ (p), a′(p) = ∞, anda(p) = a′(p) sincedℓ(s0, p) ≤ b(p), which
implies¬ (2).
Case 2:s1 ≺ p ∧ p ∈ N→ℓ (s1). Due to N1 (see proof of Theorem 1), we have∀x, s1 �
x � p : x ∈ N→ℓ (s1). Hence,∀x : dℓ(s0, x) ≤ dℓ(s0, s1) + r→ℓ (s1) ≤ b(x). By an inductive
proof, we can show thata(p) =∞, which yields¬ (2).
Case 3:s1 ≺ p ∧ p 6∈ N→ℓ (s1) ∧ s0 ∈ N←ℓ (p). We havedℓ(s0, p) ≤ r←ℓ (p), which directly
implies¬ (2).
Case 4:s1 ≺ p ∧ p 6∈ N→ℓ (s1) ∧ s0 6∈ N←ℓ (p) ∧ |P ′ ∩ N→ℓ (s1) ∩ N←ℓ (p)| ≥ 2. The
assumption of Case 4 implies that there are two nodesu andv, s1 � u ≺ v � p, that belong
to P ′ ∩ N→ℓ (s1) ∩ N←ℓ (p). If a(p) =∞, we directly have¬ (2). Otherwise, there has to be
some nodew onP ′ such thata′(w) =∞∧ dℓ(s0, w) > b(w). Obviously,w 6= s0. Consider
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such a nodew that maximisesdℓ(s0, w), i.e., for all nodesx ≻ w the above stated condition
does not hold, which impliesa(x) = a′(x) ≥ a(w). In particular,a(p) ≥ a(w). We have
b(w) ≥ dℓ(s0, s1) + r→ℓ (s1). We can conclude thatdℓ(s0, w) > dℓ(s0, s1) + r→ℓ (s1) and,
thus,w 6∈ N→ℓ (s1). We obtain, by N1,u ≺ v ≺ w. Hence,a(w) ≥ dℓ(s0, u), which implies
a(p) ≥ dℓ(s0, u). Furthermore, sinceu ∈ N←ℓ (p), we haver←ℓ (p) ≥ dℓ(u, p). Adding up the
last two inequalities yieldsa(p) + r←ℓ (p) ≥ dℓ(s0, p), which corresponds to¬ (2). ⊓⊔

Algorithmic Details: Phase 2.For a nodeu ∈ B, we defineB(u) := {u} ∪ {v | v is a
descendant ofu in B} and theslack∆(u) := minw∈B(u) (r←ℓ (w)− dℓ(u, w)). For a leafb,
we haveB(b) = {b} and∆(b) = r←ℓ (b). The slack of an inner nodeu can be computed
using only the slacks of its childrenC(u): ∆(u) = min

(
r←ℓ (u), minc∈C(u) ∆c(u)

)
, where

∆c(u) := ∆(c)− dℓ(u, c). This leads to an equivalent, recursive definition.
The tentative slackŝ∆(u) of all nodesu in B are set tor←ℓ (u). We process all nodes in

the reverse order as they were settled. This guarantees thatall descendants of some nodeu
have been processed beforeu is processed. We can stop as soon as a nodeu ∈ N→ℓ (s0) is
encountered. We maintain the invariant that the tentative slack ∆̂(u) of an elementu that is
processed is equal to the actual slack∆(u). When a nodeu is processed, for each parentp
of u in B, we perform the following steps: compute∆u(p) = ∆(u)−dℓ(p, u); if ∆u(p) < 0,
the edge(p, u) is added toEℓ+1; if ∆u(p) < ∆̂(p), the tentative slack̂∆(p) is set to∆u(p).
Figure 6 gives an example.
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Fig. 6. An example of theslack-based methodthat realises Phase 2 of the construction. The process is shown only for a
part of the tree. As before, the weight of an edge is the lengthof the line that represents the edge in this figure. For the sake
of transparency, the (rounded) weights are given explicitly for the relevant edges. Furthermore, the slacks of the involved
nodes are given. Edges that areadded toEℓ+1 are red, edges that arenot addedblue.

Theorem 2. An edge(u, v) is added toEℓ+1 by theslack-based methodintroduced above
iff it lies on a path〈s0, . . . , u, v, . . . , p〉 in the partial shortest-path DAGB with the property
thatv 6∈ N→ℓ (s0) andu 6∈ N←ℓ (p).

Proof. ⇐) From the definition of the slack of a node, it follows that

∆v(u) = ∆(v)− dℓ(u, v) ≤ r←ℓ (p)− dℓ(v, p)− dℓ(u, v) = r←ℓ (p)− dℓ(u, p) < 0

becauseu 6∈ N←ℓ (p). Sincev 6∈ N→ℓ (s0), v is processed at some point. Then,∆v(u) is
computed and, since it is negative, the edge(u, v) is added toEℓ+1.
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⇒) Only edges that belong to a path inB from s0 to a nodep are considered. The
conditionv 6∈ N→ℓ (s0) is never violated because the traversal from the leaves to the root,
and consequently, the addition of edges toEℓ+1, is not continued when a nodev ∈ N→ℓ (s0)
is encountered. If an edge(u, v) is added, the condition∆v(u) < 0 is fulfilled. Hence,
∆(u) = minw∈B(u) (r←ℓ (w)− dℓ(u, w)) ≤ ∆v(u) < 0. Therefore, there is a nodep such that
dℓ(u, p) > r←ℓ (p), i.e.,u 6∈ N←ℓ (p). ⊓⊔
Theorem 3. LetVB denote the set of nodes ofs0’s partial shortest-path DAGB. LetGB =
(VB, EB) denote the subgraph ofG′ℓ that is vertex induced byVB. The complexity of Phase 1
and 2 started froms0 is TDijkstra(|GB|).
Proof. The number of nodes ofGB is denoted byn′, the number of edges bym′. The com-
plexity of Phase 1 corresponds to the complexity of a SSSP search in GB started froms0,
i.e.,O(n′ + m′) outside the priority queue plusn′ insertandn′ deleteMinoperations plus at
mostm′ decreaseKeyoperations. During Phase 2, each node and each edge is processed at
most once, i.e., Phase 2 runs inO(n′ + m′). ⊓⊔

Speeding Up the Highway Network Construction.Even a single active endpoint of a long
edge (e.g., a long-distance ferry connection) can cause a large search space during con-
struction, although most nodes of the search space might already be passive. To face this
undesirable effect, we declare an active nodev to be amaverickif dℓ(s0, v) > f · r→ℓ (s0),
wheref is a parameter. When all active nodes are mavericks, the search from passive nodes
is no longer continued. This way, the construction process is accelerated andEℓ+1 becomes
a superset of the highway network. Hence, queries will be slower, but still compute exact
shortest paths. Themaverick factorf enables us to adjust the trade-off between construction
and query time.

4.2 Computing the Core

In order to obtain the core of a highway network, we contract it, which yields several advan-
tages. The search space during the queries gets smaller since bypassed nodes are not touched
and the construction process gets faster since the next iteration only deals with the nodes that
have not been bypassed. Furthermore, a more effective contraction allows us to use smaller
neighbourhood sizes without compromising the shrinking ofthe highway networks. This
improves both construction and query times. However, bypassing nodes involves the cre-
ation of shortcuts, i.e., edges that represent the bypasses. Due to these shortcuts, the average
degree of the graph is increased and the memory consumption grows. In particular, more
edges have to be relaxed during the queries. Therefore, we have to carefully select nodes so
that the benefits of bypassing them outweigh the drawbacks.

We give an iterative algorithm that combines the selection of the bypassable nodesBℓ

with the creation of the corresponding shortcuts. We managea stack that contains all nodes
that have to be considered, initially all nodes fromVℓ. As long as the stack is not empty,
we deal with the topmost nodeu. We check thebypassability criterion#shortcuts≤ c ·
(degin(u) + degout(u)), which compares the number of shortcuts that would be created when
u was bypassed with the sum of the in- and outdegree ofu. The magnitude of the contraction
is determined by the parameterc. If the criterion is fulfilled, the node is bypassed, i.e., itis
added toBℓ and the appropriate shortcuts are created. Note that the creation of the shortcuts
alters the degree of the corresponding endpoints so that bypassing one node can influence
the bypassability criterion of another node. Therefore, all adjacent nodes that have been
removed from the stack earlier, have not been bypassed, yet,and are bypassable now are
pushed on the stack once again.
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Theorem 4. If c < 2, |E ′ℓ| is in O(|Vℓ|+ |Eℓ|).
Proof. If a nodeu is bypassed, the number of edges in the (tentative) core is increased by
Du := #shortcuts−degin(u)−degout(u). (We have to subtractdegin(u) anddegout(u) since
the edges incident tou no longer belong to the core.) Note that#shortcuts= degin(u) ·
degout(u)− deg↔(u), wheredeg↔(u) denotes the number of adjacent nodesv that are con-
nected tou by both an edge(u, v) and an edge(v, u). (We have to subtractdeg↔(u) to ac-
count for the fact that a ‘shortcut’ that would be a self-loopis not created.) We can conclude
thatDu ≤ degin(u) · degout(u) − degin(u)− degout(u). If degin(u) ≤ 1 or degout(u) ≤ 1,
we obtainDu ≤ 0. Now, we deal with the case thatdegin(u) ≥ 2 anddegout(u) ≥ 2.
Sincedeg↔(u) ≤ min(degin(u), degout(u)), a node that fulfils the bypassability criterion
also fulfilsdegin(u) · degout(u) ≤ c · (degin(u) + degout(u)) + min(degin(u), degout(u)).
The inequalityx · y ≤ c(̇x + y) + min(x, y) has only finitely many solutions(x, y) for
x, y ∈ N, x, y ≥ 2 if c ∈ R is a constant less than 2. Consider the solution(x, y) that max-
imisesk := x · y. If there is no solution, takek := 0. Note thatk is a constant that only
depends on the constantc. We can conclude thatDu ≤ k.

Each node fromVℓ is bypassed at most once. For each bypassed node, the number of
edges in the (tentative) core is increased by at mostk. Therefore,|E ′ℓ| ≤ k · |Vℓ|+ |Eℓ|. ⊓⊔

If we used#shortcuts≤ max (degin(u), degout(u)) as bypassability criterion, we would
get a contraction that would be very similar to our earlier trees-and-lines method [23]. Note
that the general version presented above allows a more effective contraction by settingc
appropriately.

Limiting Component Sizes.To reduce the observed maximum query time, we implement
a limit on the number of hops a shortcut may represent. By thismeans, the sizes of the
components of bypassed nodes are reduced—in particular, the first contraction step tended
to create quite large components of bypassed nodes so that ittook a long time to leave such
a component when the search was started from within it.

5 Query

Our highway query algorithmis a modification of the bidirectional version of Dijkstra’s
algorithm. Note that in contrast to the construction, during the query we neednot to keep
track of ambiguous shortest paths. For now, we assume that the search isnot aborted when
both search scopes meet. This matter is dealt with in Section5.3. We only describe the
modifications of the forward search since forward and backward search are symmetric. In
addition to thedistancefrom the source, each node is associated with the searchleveland
thegap to the ‘next applicable neighbourhood border’. The search starts at the source node
s in level 0. First, a local search in the neighbourhood ofs is performed, i.e., the gap to the
next border is set to the neighbourhood radius ofs in level 0. When a nodev is settled, it
adopts the gap of its parentu minus the length of the edge(u, v). As long as we stay inside
the current neighbourhood, everything works as usual. However, if an edge(u, v) crosses
the neighbourhood border (i.e., the length of the edge is greater than the gap), we switch
to a higher search levelℓ. The nodeu becomes anentrance pointto the higher level. If the
level of the edge(u, v) is less than the new search levelℓ, the edge isnot relaxed—this
is one of the two restrictions that cause the speedup in comparison to Dijkstra’s algorithm
(Restriction 1). Otherwise, the edge is relaxed:v adopts the new search levelℓ and the gap
to the border of the neighbourhood ofu in levelℓ sinceu is the corresponding entrance point
to levelℓ.
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We have to deal with the special case that an entrance point tolevel ℓ does not belong
to the core of levelℓ. In this case, the search is continued inside a component of bypassed
nodes till the level-ℓ core is entered, i.e., a nodeu ∈ V ′ℓ is settled. At this point,u is assigned
the gap to the border of the level-ℓ neighbourhood ofu. Note that before the core is entered
(i.e., inside a component of bypassed nodes), the gap has been infinity (according to R1). To
increase the speedup, we introduce another restriction (Restriction 2): when a nodeu ∈ V ′ℓ is
settled, all edges(u, v) that lead to a bypassed nodev ∈ Bℓ in search levelℓ arenot relaxed,
i.e., once entered the core, we will never leave it again.

Figure 7 gives a detailed example of the forward search of a highway query. The search
starts at nodes. The gap ofs is initialised to the distance froms to the border of the neigh-
bourhood ofs in level 0. Within the neighbourhood ofs, the search process corresponds
to a standard Dijkstra search. The edge that leads tou leaves the neighbourhood. It is not
relaxed due to Restriction 1 since the edge belongs only to level 0. In contrast, the edge that
leavess1 is relaxed since its level allows to switch to level 1 in the search process.s1 and its
direct successor are bypassed nodes in level 1. Their neighbourhoods are unbounded, i.e.,
their neighbourhood radii are infinity so that the gap is set to infinity as well. Ats′1, we leave
the component of bypassed nodes and enter the core of level 1.Now, the search is continued
in the core of level 1 within the neighbourhood ofs′1. The gap is set appropriately. Note
that the edge tov is not relaxed due to Restriction 2 sincev is a bypassed node. Instead, the
direct shortcut tos2 is used. Here, we switch to level 2. In this case, we do not enter the next
level through a component of bypassed nodes, but we get directly into the core. The search
is continued in the core of level 2 within the neighbourhood of s′2. And so on.
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Fig. 7.A detailed example of a highway query. Only the forward search is depicted. Nodes in level 0, 1, and 2 are vertically
striped, solid, and horizontally striped, respectively. In level 1, dark shades represent core nodes, light shades bypassed
nodes. Edges in level 0, 1, and 2 are dashed, solid, and dotted, respectively.

Despite of Restriction 1, we always find the optimal path since the construction of the
highway hierarchy guarantees that the levels of the edges that belong to the optimal path are
sufficiently high so that these edges are not skipped. Restriction 2 does not invalidate the
correctness of the algorithm since we have introduced shortcuts that bypass the nodes that
do not belong to the core. Hence, we can use these shortcuts instead of the original paths.

5.1 The Basic Algorithm

We use two priority queues
−→
Q and

←−
Q , one for the forward search and one for the backward

search. For each search direction, a nodeu is associated with a triple(δ(u), ℓ(u), gap(u)),
which we often callkey. It consists of the (tentative) distanceδ(u) from s (or t) to u, the
search levelℓ(u), and the gap gap(u) to the next applicable neighbourhood border. Only the
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first componentδ(u) is used to decide the priority within the queue.2 We use the remaining
two components for a tie breaking rule in the case that the same node is reached with two
different keysk := (δ, ℓ, gap) andk′ := (δ′, ℓ′, gap′) such thatδ = δ′. Then, we preferk to
k′ iff ℓ > ℓ′ or ℓ = ℓ′∧gap< gap′. Note thatanyother tie breaking rule (or even omitting an
explicit rule) will yield a correct algorithm. However, thechosen rule is most aggressive and
has a positive effect on the performance. Figure 8 contains the pseudo-code of the highway
query algorithm.

input: source nodes and target nodet
output: distanced(s, t)

1 d′ :=∞;
2 insert(

−→
Q, s, (0, 0, r→0 (s))); insert(

←−
Q, t, (0, 0, r←0 (t)));

3 while (
−→
Q ∪

←−
Q 6= ∅) do {

4 select direction⇌ ∈ {→,←} such that
⇌

Q 6= ∅;

5 u := deleteMin(
⇌

Q);
6 if u has been settled from both directionsthen d′ := min(d′,

−→
δ (u) +

←−
δ (u));

7 if gap(u) 6=∞ then gap′ := gap(u) elsegap′ := r⇌

ℓ(u)(u);

8 foreach e = (u, v) ∈
⇌

E do {
9 for (ℓ := ℓ(u), gap:= gap′; w(e) > gap;

ℓ++, gap:= r⇌

ℓ (u)); // go “upwards”
10 if ℓ(e) < ℓ then continue; // Restriction 1

11 if u ∈ V ′ℓ ∧ v ∈ Bℓ then continue; // Restriction 2

12 k := (δ(u) + w(e), ℓ, gap− w(e));

13 if v has been reachedthen decreaseKey(
⇌

Q, v, k); elseinsert(
⇌

Q, v, k);
14 }
15 }
16 return d′;

Fig. 8.The highway query algorithm. Differences to the bidirectional version of Dijkstra’s algorithm are marked: additional
and modified lines have a framed line number; in modified lines, the modifications are underlined.

Remarks:

– Line 4: The correctness of the algorithm does not depend on the strategy that determines
the order in which the forward and the backward searches are processed. However, the
choice of the strategy can affect the running time in the casethat an abort-on-success
criterion is applied (see Section 5.3).

– Line 7: This line deals with the special case that the entrance point did not belong to the
core when the current search levelℓ was entered, i.e., the gap was set to infinity. In this
case, the gap is set tor⇌

ℓ(u)(u). This is correct even ifu does not belong to the core, either,
because in this case the gap stays at infinity.

– Line 9: It might be necessary to go upwards more than one levelin a single step.
– Line 13: In the decreaseKey operation, the old key ofv is only replaced byk if the above

mentioned condition is fulfilled, i.e., if (a) the tentativedistance is improved or (b) stays
unchanged while the tie breaking rule succeeds. In the latter case (b), no priority queue
operation is invoked since the priority (the tentative distance) has not changed.3

2 If the search direction is not clear from the context, we willexplicitly write
−→
δ (u) and

←−
δ (u) to distinguish betweenu’s

priority in
−→
Q and

←−
Q .

3 That way, we also avoid problems that otherwise could arise when an already settled node is reached once again via a
zero weight edge.

14



Algorithmic Details. If we group the outgoing edges(u, v) of each nodeu by level, we
can avoid looking at edges(u, v) in levelsℓ(u, v) < ℓ(u) since Restriction 1 would always
apply to them. We can do without explicitly testing Restriction 2 if all edges(u, v) with
k := ℓ(u, v), u ∈ V ′k , andv ∈ Bk have been downgraded to levelk − 1. Then, the test of
Restriction 1 also covers Restriction 2.

5.2 Proof of Correctness

Difficulties. Although the basic concepts (e.g. the definition of the highway network) and
the algorithm are quite simple, the proof of correctness gets surprisingly complicated. The
main reason for that is the fact that we cannot prove thattheshortest path is found since there
might be several shortest paths of the same length. We could assume that the shortest paths
in the input are unique or that the uniqueness can be guaranteed by adding small fractions
to the edge weights as it is done by other authors who face similar problems. However, the
former would be too restrictive since usually, in real-world road networks, there are at least
a few ambiguous instances, and a reliable realisation of thelatter would be rather difficult.
Furthermore, the introduction of shortcuts adds a lot of ambiguity even if it was not present
in the input.

Therefore, if we pick any shortest pathP to show that it is found by the query algorithm,
it can happen that a nodeu on P is settled from another node than its predecessor onP .
Of course, in this case,u will still be assigned the optimal distance from the source,but
the search level and the distance to the next neighbourhood border may be different than
expected so that we have to adapt to the new situation.

Outline. We face the above mentioned difficulties in the following way: First, we show
that the algorithm terminates and deal with the special casethat no path from the source
to the target exists (Section A.1). Then, we introduce some definitions and concepts that
will be useful in the main part of the correctness proof. In Section A.2, we define for a
given path, a correspondingcontractedpath and anexpandedpath, where subpaths in the
original graph are replaced by shortcuts or vice versa, respectively. In Section A.3, we first
define the concepts oflast neighbourandfirst core node, which, iteratively applied, lead to
anunidirectional labellingof a given path. Figure 9 gives an example. Applying a forward
and a backward labelling to the same path then allows the definition of a meeting leveland
a meeting point(Figure 10). The latter requires a case distinction since the forward and
backward labelling may either meet in some core or in some component of bypassed nodes.
Finally, we introduce the termhighway path, a path whose properties exactly comply with
the two restrictions of the query algorithm. Figure 11 givesan example.

In Section A.4, we deal with the reachability along a highwaypath. Basically, we show
that if the query has settled some nodeu on a highway path with the appropriate key, then

s1 s′1 s2

N→1 (s′1)

s0 = s′0

N→0 (s′0)

s

Fig. 9. Example for a forward labelling of a pathP . The labelss0 ands′0 are set tos (base case). The nodes1 is the
last neighbour ofs′0 (denoted by−→ω P

0 (s′0)), the nodes′1 is the first level-1 core node (denoted by−→α P

1 (s1)), s2 is the last
neighbour ofs′1, and so on.
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s0=s′0 s1 s′1

t′2t3

s′2

t′0=t0t′1=t1

p

s2

t2

s t

Fig. 10.Example for a forward and backward labelling (depicted below and above the nodes, respectively). The meeting
level is 2, the meeting point isp.

s1 s′1s0=s′0

0 1

s
s2

1

t2 t′0=t0t′1=t1
t00 011 1

00 1 1 2 1 1 0

Fig. 11. Example for a highway path. Each edge belongs at least to the given level, each node at least to the given core
level.

u’s successor on that path can be reached fromu with the appropriate key as well (Lemmas 6
and 7, which are proved using the auxiliary Lemma 5). In otherwords, if there is a highway
path, the query can follow the path (at least if there was no ambiguity).

In Section A.5, we use all concepts and lemmas introduced in the preceding sections to
conduct the actual correctness proof, where we also deal with ambiguous paths. The general
idea is to say that at any point the query algorithm has some valid stateconsisting of a
shortests-t-pathP and two nodesu � u that splitP into three parts such that the first and
the third part are paths in the forward and backward search tree, respectively, and the second
part is a contracted path. For such a valid state, we can provethat any node on the first and
third part has been settled with the appropriate key (Lemma 8). Furthermore, we can show
thatP is a highway path (Lemma 9).

When the algorithm is started, the nodess andt are settled and some shortests-t-path
P in the original graph exists. (The special case that nos-t-path exists has already been
dealt with.) Consequently, ourinitial state is composed of the contracted version ofP and
the nodess andt, which makes it a valid state. Afinal state is a valid state where forward
and backward search have met, i.e., they have settled a common nodeu = u. Originally, we
wanted to show that a shortest path is found. Now, we see (in Lemma 10) that it is sufficient
to prove that a final state is reached.

We have already defined the meeting pointp on a path. We fall back on this definition
and intend to prove that forward and backward search meet atp. When we look at any valid
non-final state, it is obvious that at least one search direction can proceed to get closer top,
i.e., we haveu ≺ p or p ≺ u (Lemma 11). We pick such anon-blockedsearch direction.
Let us assume w.l.o.g. that we picked the forward direction.We know thatu has been settled
with the appropriate key and thatP is an optimal highway path (Lemmas 8 and 9). Due to the
‘reachability along a highway path’ (Lemmas 6 and 7), we can conclude thatu’s successor
v can be reached with the appropriate key as well, in particular with the optimal distance
from s. A node that can be reached with the optimal distance will also be settled at some
point with the optimal distance. However, we cannot be sure thatv is settled withu as its
parent since the shortest path froms to v might be ambiguous. At this point the state concept
gets handy: we just replace the subpath ofP from s to v with the path in the search tree that
actually has been taken yielding a pathP+; we obtain a new state that consists ofP + and
the nodesv andu. We prove that the new state is valid (Lemma 12).

Thus, we can show that from any valid non-final state another valid state is reached at
some point. We also show in Lemma 12 that we cannot get into some cycle of states since
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in each step the length of the middle part of the path is decreased. Hence, starting from the
initial state, eventually a final state is reached so that a shortest path is found (Theorem 5).

The actual proof can be found in Appendix A.

5.3 Optimisations

Rearranging Nodes.Similar to [20], after the construction has been completed,we rearrange
the nodes by core level, which improves locality for the search in higher levels and, thus,
reduces the number of cache misses.

Speeding Up the Search in the Topmost Level.Let us assume that we have a distance table
that contains for any node pairs, t ∈ V ′L the optimal distancedL(s, t). Such a table can
be precomputed during the preprocessing phase by|V ′L| SSSP searches inG′L. Using the
distance table, we do not have to search in levelL. Instead, when we arrive at a nodeu ∈ V ′L
that leads to levelL, we addu to the initially empty set

−→
I or

←−
I depending on the search

direction; we do not relax the edge that leads to levelL. After all entrance points have been
encountered, we consider all pairs(u, v) ∈ −→I ×←−I and compute the minimum path length
D :=

−→
δ (u) + dL(u, v) +

←−
δ (v). Then, the length of the shortests-t-path is the minimum of

D and the lengthd′ of the tentative shortest path found so far (in case that the search scopes
have already met in a level< L).

For the sake of a simple incorporation of this optimisation into the highway query algo-
rithm, we slightly revise the properties R1 and R2: we use twodistinguishable values∞1

and∞2 that are larger than any real number and setr⇌

ℓ (u) := ∞1 for any ℓ and any node
u 6∈ V ′ℓ (R1) andr⇌

L (u) := ∞2 for any nodeu ∈ V ′L (R2). Then, we just add two lines to
Figure 8 and modify Line 16:

between Lines 7 and 8:
7a if gap′ 6=∞1 ∧ ℓ(u) = L then {

⇌

I :=
⇌

I ∪{u}; continue;}
between Lines 11 and 12:
11a if gap 6=∞1 ∧ ℓ = L ∧ ℓ > ℓ(u) then {

⇌

I :=
⇌

I ∪{u}; continue;}
16 return min({d′} ∪ {−→δ (u) + dL(u, v) +

←−
δ (v) | u ∈ −→I , v ∈ ←−I });

In Section A.6, we show that our proof of correctness still holds when the distance table
optimisation is applied.

Abort on Success.In the bidirectional version of Dijkstra’s algorithm, we can abort the
search as soon as both search scopes meet. Unfortunately, this would be incorrect for our
highway query algorithm. Therefore, we use a more conservative criterion: after a tentative
shortest pathP ′ has been encountered (i.e., after both search scopes have met), the forward
(backward) search is not continued if the minimum elementu of the forward (backward)
queue has a keyδ(u) ≥ w(P ′). Obviously, the correctness of the algorithm is not invalidated
by this abort criterion. In [23] we tried using more sophisticated criteria in order to reduce
the search space. However, it turned out that this simple criterion, since it can be evaluated
so efficiently, yields better query times in spite of a somewhat larger search space. Note that
when the distance table optimisation is used and random queries are performed, our simple
abort criterion is very close to an optimal criterion even with respect to the search space
size: our experiments indicate that less than 1% of the search space is visited after the first
meeting of forward and backward search.
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5.4 Outputting Complete Path Descriptions

The highway query algorithm in Figure 8 only computes the distance froms to t. In order
to determine the actual shortest path, we need to store pointers from each node to its parent
in the search tree. Note that the algorithm could be easily modified to computeall shortest
paths betweens andt by just storing more than one parent pointer in case of ambiguities.
However, subsequently, we only deal with a single shortest path.

We face two problems in order to determine a complete description of the shortest path:
(a) we have to bridge the gap between the forward and backwardtopmost core entrance
points (in case that the distance table optimisation is used) and (b) we have to expand the
used shortcuts to obtain the corresponding subpaths in the original graph.

Problem (a) can be solved using a simple algorithm: We start with the forward core
entrance pointu. As long as the backward entrance pointv has not been reached, we consider
all outgoing edges(u, w) in the topmost core and check whetherdL(u, w) + dL(w, v) =
dL(u, v); we pick an edge(u, w) that fulfils the equation, and we setu := w. The check can
be performed using the distance table. It allows us to greedily determine the next hop that
leads to the backward entrance point.

Problem (b) can be solved without using any extra data (Variant 1). For each shortcut
(u, v) ∈ Sℓ on the shortest path, we perform a search fromu to v in order to determine the
represented path inGℓ. This search can be accelerated by using the knowledge that the first
edge of the path enters a componentC of bypassed nodes, the last edge leads tov, and all
other edges are situated within the componentC. The represented path inGℓ may contain
shortcuts from setsSk, k < ℓ, which are expanded recursively. In the end, we obtain the
represented path fromu to v in the original graph.

However, if a fast output routine is required, it is necessary to spend some additional
space to accelerate the unpacking process. We use a rather sophisticated data structure to
represent unpacking information for the shortcuts in a space-efficient way (Variant 2). In
particular, we do not store a sequence of node IDs that describe a path that corresponds to
a shortcut, but we store onlyhop indices: for each edge(u, v) on the path that should be
represented, we store its rank within the ordered group of edges that leaveu. Since in most
cases the degree of a node is very small, these hop indices canbe stored using only a few
bits. The unpacked shortcuts are stored in a recursive way, e.g., the description of a level-2
shortcut may contain several level-1 shortcuts. Accordingly, the unpacking procedure works
recursively.

To obtain a further speed-up, we have a variant of the unpacking data structures (Vari-
ant 3) that caches the complete descriptions—without recursions—of all shortcuts that be-
long to the topmost level, i.e., for these important shortcuts that are frequently used, we do
not have to use a recursive unpacking procedure, but we can just append the corresponding
subpath to the resulting path.

5.5 Turning Restrictions

A turning restriction (in its simplest and most common form)is expressed as an edge pair
((u, v), (v, w)): the edge(v, w) must not be traversed if the nodev has been reached via the
edge(u, v). Dealing with turning restrictions is a well-studied problem [33, 34]. In principle,
there are two basic approaches: modifying the query algorithm or modelling the restrictions
into the graph, which introduces additional artificial nodes and edges at affected road junc-
tions. The latter technique can be applied irrespective of the used query algorithm.

In case of highway hierarchies, we expect that modelling turning restrictions into the
graph only slightly deteriorates the performance since theartificial nodes usually have a
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very small degree so that most of them get bypassed in the veryfirst contraction step. Fur-
thermore, turning restrictions are often encountered at local streets that are not promoted to
high levels of the hierarchy so that the negative impact is bounded to the lower levels. With
respect to memory consumption, it is important to note that after the preprocessing has been
completed, artificial nodes and edges at road junctions thatonly belong to level 0 can be
abandoned provided that the query algorithm (which in level0 just corresponds to Dijkstra’s
algorithm) is modified appropriately to handle turning restrictions.

6 Experiments

Apart from Section 6.8, all experimental results refer to the scenario where we only want
to compute the shortest-path length between two nodes without outputting the actual route.
Turning restrictions are exclusively handled in Section 6.9.

6.1 Implementation

We implemented highway hierarchies in C++, using the C++ Standard Template Library
and making extensive use ofgeneric programmingtechniques using C++’s template class
mechanism. As graph data structure, we use our own implementation of anadjacency array
extended by an additional layer that contains level-specific data for each node and level that
the node belongs to. We use 32 bits to store edge weights and path lengths.Binary heaps
are used as priority queues. Note that in case of road networks only a comparatively small
number ofdecreaseKey-operations is performed. Furthermore, the number of nodesthat are
in the priority queue at the same time is very small in case of highway hierarchies (usually
less than 100 nodes). Therefore, using a more sophisticatedpriority queue implementation
is not likely to increase the performance significantly. Forsome more details on the imple-
mentation, we refer to Appendix B.

6.2 Environment and Instances

The experiments were done on one core of a single AMD Opteron Processor 270 clocked at
2.0 GHz with 8 GB main memory and 2× 1 MB L2 cache, running SuSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler 4.0.2 using optimisation
level 3.

We deal with the road networks of Western Europe4 and of the USA (without Hawaii)
and Canada. Both networks have been made available for scientific use by the company
PTV AG. The original graphs contain for each edge a length anda road category, e.g.,
motorway, national road, regional road, urban street. We assign average speeds to the road
categories5, compute for each edge the average travel time, and use it as weight. In addition,
we perform experiments on a publicly available version of the US road network (without
Alaska and Hawaii) that was obtained from the TIGER/Line Files [35]. However, in contrast
to the PTV data, the TIGER graph is undirected, planarised and distinguishes only between
four road categories (40, 60, 80, 100 km/h), in fact 91% of allroads belong to the slowest
category so that you cannot discriminate them.

Table 1 summarises important properties of the used road networks and the key results
of the experiments.

4 Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden,
Switzerland, and the UK

5 For Europe: 10, 20,. . ., 130 km/h; for USA/CAN: 16, 24, 32, 40, 56, 64, 72, 80, 88, 96, 96, 104, 112 km/h.
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Table 1.Overview of the used road networks and key results. ‘∅overhead/node’ accounts for theadditionalmemory that
is needed by our highway hierarchy approach (divided by the number of nodes) compared to a space-efficient bidirectional
implementation of Dijkstra’s algorithm. Query times are average values based on 10 000 randoms-t-queries. ‘Speedup’
refers to a comparison with Dijkstra’s algorithm (unidirectional). Worst case is an upper bound foranypossible query in
the respective graph.

Europe USA/CAN USA (Tiger)

INPUT

#nodes 18 029 721 18 741 705 24 278 285
#directed edges 42 199 587 47 244 849 58 213 192
#road categories 13 13 4

PARAM.
average speeds [km/h] 10–130 16–112 40–100
H 30 40 40

PREPROC.
CPU time [min] 13 17 15
∅overhead/node [byte] 48 46 34

QUERY

CPU time [ms] 0.61 0.83 0.67
#settled nodes 709 871 925
#relaxed edges 2 531 3 376 3 823
speedup (CPU time) 9 935 7 259 9 303
speedup (#settled nodes) 12 715 10 750 12 889
worst case (#settled nodes) 2 388 2 428 2 505

6.3 Parameters

Default Settings.Unless otherwise stated, the following default settings apply. We use the
maverick factorf = 2(i − 1) for the i-th iteration of the construction procedure, the con-
traction ratec = 2, the shortcut hops limit 10, and the neighbourhood sizesH as stated in
Table 1—the same neighbourhood size is used for all levels ofa hierarchy. First, we contract
the original graph.6 Then, we perform five iterations of our construction procedure, which
determines a highway network and its core. Finally, we compute the distance table between
all level-5 core nodes.

Self-Similarity. For two levelsℓ and ℓ + 1 of a highway hierarchy, theshrinking factor
is the ratio between|E ′ℓ| and |E ′ℓ+1|. In our experiments, we observed that the highway
hierarchies of Europe and the USA were almostself-similarin the sense that the shrinking
factor remained nearly unchanged from level to level when weused the same neighbourhood
sizeH for all levels—provided thatH was not too small.

Figure 12 demonstrates the shrinking process for Europe. Note that the first contraction
step is not shown. In contrast to our default settings, we do not stop after five iterations. For
most levels andH ≥ 70, we observe an almost constant shrinking factor (which appears
as a straight line due to the logarithmic scale of the y-axis). The greater the neighbourhood
size, the greater the shrinking factor. The last iteration is an exception: the highway network
collapses, i.e., it shrinks very fast because nodes that areclose to the border of the network
usually do not belong to the next level of the highway hierarchy, and when the network gets
small, almost all nodes are close to the border. In case of thesmallest neighbourhood size
(H = 30), the shrinking factor gets so small that the network does not collapse even after
14 levels have been constructed.

Varying the Neighbourhood Size.Note that in order to simplify the experimental setup all
results in the remainder of Section 6.3 have been obtained without rearranging nodes by
level. However, since we want to demonstrate the effects of choosing different parameter
settings, the relative performance is already very meaningful.

6 In Section 3, we gave the definition of the highway hierarchies where we first construct a highway network and then
contract it. We decided to change this order in the experiments, i.e., to start with an initial contraction phase, since we
observed a better performance in this case.
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Fig. 12.Shrinking of the highway networks of Europe. For different neighbourhood sizesH and for each levelℓ, we plot
|E′ℓ |, i.e., the number of edges that belong to the core of levelℓ.

In one test series (Figure 13), we used all the default settings except for the neighbour-
hood sizeH, which we varied in steps of 5. On the one hand, ifH is too small, the shrinking
of the highway networks is less effective so that the level-5core is still quite big. Hence, we
need much time and space to precompute and store the distancetable. On the other hand,
if H gets bigger, the time needed to preprocess the lower levels increases because the area
covered by the local searches depends on the neighbourhood size. Furthermore, during a
query, it takes longer to leave the lower levels in order to get to the topmost level where
the distance table can be used. Thus, the query time increases as well. We observe that the
preprocessing time is minimised for neighbourhood sizes around 40. In particular, the opti-
mal neighbourhood size does not vary very much from graph to graph. In other words, if we
used the same parameterH, say 40, for all road networks, the resulting performance would
be very close to the optimum. Obviously, choosing differentneighbourhood sizes leads to
different space-time trade-offs.

 10

 12

 14

 16

 18

 20

 22

 20 30 40 50 60 70 80 90

P
re

pr
oc

es
si

ng
 T

im
e 

[m
in

]

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90

M
em

or
y 

O
ve

rh
ea

d 
pe

r 
N

od
e 

[b
yt

e]

Europe
USA/CAN

USA

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7

 20 30 40 50 60 70 80 90

Q
ue

ry
 T

im
e 

[m
s]

Fig. 13.Preprocessing and query performance depending on the neighbourhood sizeH .

Varying the Contraction Rate.In another test series (Table 2a), we did not use a distance ta-
ble, but repeated the construction process until the topmost level was empty or the hierarchy
consisted of 15 levels. We varied the contraction ratec from 0.5 to 2.5. In case ofc = 0.5
(andH = 30), the shrinking of the highway networks does not work properly so that the top-
most level is still very big. This yields huge query times. Choosing larger contraction rates
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reduces the preprocessing and query times since the cores and search spaces get smaller.
However, the memory usage and the average degree are slightly increased since more short-
cuts are introduced. Adding too many shortcuts (c = 2.5) further reduces the search space,
but the number of relaxed edges increases so that the query times get worse.

Varying the Number of Levels.In a third test series (Table 2b), we used the default settings
except for the number of levels, which we varied from 6 to 11. Note that the original graph
and its core (i.e., the result of the first contraction step) counts as one level so that for example
‘6 levels’ means that only five levels are constructed. In each test case, a distance table was
used in the topmost level. The construction of the higher levels of the hierarchy is very
fast and has no significant effect on the preprocessing times. In contrast, using only six
levels yields a rather large distance table, which somewhatslows down the preprocessing
and increases the memory usage. However, in terms of query times, ‘6 levels’ is the optimal
choice since using the distance table is faster than continuing the search in higher levels.
We omitted experiments with less levels since this would yield very large distance tables
consuming very much memory.

Results for further combinations of neighbourhood size, contraction rate, and number of
levels can be found in Table 5 and 6 in Appendix C.

Table 2.Preprocessing and query performance for the European road network depending on the contraction ratec (a) and
the number of levels (b). ‘overhead’ denotes the average memory overhead per node in bytes.

contr.
PREPROCESSING QUERY

ratec
time over-

∅deg.
time #settled #relaxed

[min] head [ms] nodes edges
0.5 83 30 3.2391.73 472 326 1 023 944
1.0 15 28 3.7 5.48 6 396 23 612
1.5 11 28 3.8 1.93 1 830 9 281
2.0 11 29 4.0 1.85 1 542 8 913
2.5 11 30 4.1 1.96 1 489 9 175

(a)

PREPROC. QUERY

# time over-time #settled
levels[min] head[ms] nodes

6 12 48 0.75 709
7 10 34 0.93 852
8 10 30 1.14 991
9 10 30 1.35 1 123
10 10 29 1.54 1 241
11 10 29 1.67 1 326

(b)

6.4 Local Queries

For use in applications it is unrealistic to assume a uniformdistribution of queries in large
graphs such as Europe or the USA. On the other hand, it would behardly more realistic to
arbitrarily cut the graph into smaller pieces. Therefore, we decided to measure local queries
within the big graphs: For each power of twor = 2k, we choose random sample pointss
and then use Dijkstra’s algorithm to find the nodet with Dijkstra rank rks(t) = r. We then
use our algorithm to make ans-t-query. By plotting the resulting statistics for each value
r = 2k, we can see how the performance scales with a natural measureof difficulty of the
query. Figure 14 shows the query times. Note that for ranks upto 218 the median query times
are scaling quite smoothly and the growth is much slower thanthe exponential increase we
would expect in a plot with logarithmicx axis, lineary axis, and any growth rate of the form
rρ for Dijkstra rankr and some constant powerρ; the curve is also not the straight line one
would expect from a query time logarithmic inr. For ranksr ≥ 219, the query times hardly
rise due to the fact that the all-pairs distance table can bridge the gap between the forward
and backward search of these queries irrespective of dealing with a small or a large gap. In
case of Europe and USA/CAN, the query times drop forr = 224 sincer is only slightly
smaller than the number of nodes so that the target lies closeto the border of the respective
road network which implies some kind of trivial sense of goaldirection for the backward
search (because, in the beginning, we practically cannot gointo the wrong direction).
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to the upper quartile and contains the median, the whiskers extend to the minimum and maximum value omitting outliers,
which are plotted individually.

6.5 Space Saving

If we omit the first contraction step and use a smaller contraction rate (⇒ less shortcuts), use
a bigger neighbourhood size (⇒ higher levels get smaller), and construct more levels before
the distance table is used (⇒ smaller distance table), the memory usage can be reduced
considerably. In case of Europe, using seven levels,H = 100, andc = 1 yields an average
overhead per node of 17 bytes. The construction and query times increase to 55 min and
1.10 ms, respectively.

6.6 Worst Case Upper Bounds

By executing a query from each node of a given graph to an addedisolated dummy node
and a query from the dummy node to each actual node in the backward graph, we obtain
a distribution of the search space sizes of the forward and backward search, respectively.
We can combine both distributions to get an upper bound for the distribution of the search
space sizes of bidirectional queries: whenF→(x) (F←(x)) denotes the number of source
(target) nodes whose search space consists ofx nodes in a forward (backward) search, we
defineF↔(z) :=

∑
x+y=z F→(x) · F←(y), i.e.,F↔(z) is the number ofs-t-pairs such that

the upper bound of the search space size of a query froms to t is z. In particular, we obtain
the upper boundmax{z | F↔(z) > 0} for the worst case without performing alln2 possible
queries.

Figure 15 visualises the distributionF↔(z) as a histogram. In a similar way, we obtained
a distribution of the number of entries in the distance tablethat have to be accessed during
ans-t-query. While the average values are reasonably small (4 066in case of Europe), the
worst case can get quite large (62 379). For example, accessing 62 379 entries in a table of
size 9 351× 9 351 takes about 1.1 ms, where 9 351 is the number of nodes of the level-5 core
of the European highway hierarchy. Hence, in some cases the time needed to determine the
optimal entry in the distance table might dominate the querytime. We could try to improve
the worst case by introducing a case distinction that checkswhether the number of entries
that have to be considered exceeds a certain threshold. If so, we would not use the distance
table, but continue with the normal search process. However, this measures would have only
little effect on theaverageperformance.
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6.7 Comparisons

In Table 3, we compare our highway hierarchies with some of the most competitive methods
where experimental results are available for the Western European and the US road network,
namely with the REAL algorithm [20], transit-node routing [27], and highway-node routing
[29]. For REAL and transit-node routing slightly smaller graphs were used, namely the
largest connected component of each road network consisting of about 99% of all nodes.
Experiments with the REAL algorithm have been performed on aslightly different machine
(dual-processor, 2.4 GHz AMD Opteron).

Although a comparison is difficult since all approaches allow different choices of pa-
rameter settings yielding different space-time trade-offs, we can make some general state-
ments: The strength of transit-node routing is clearly the extremely good query performance.
Highway-node routing has an outstandingly low memory consumption, while the query
times are competitive to highway hierarchies and REAL or even slightly superior in case
of the US road network. Highway hierarchies can achieve verylow preprocessing times
or a quite low memory consumption, while query times are reasonably good in all cases.
REAL’s performance is similar to highway hierarchies except for the preprocessing times,
which tend to be considerably higher.

It is very important to note that both highway-node routing and the implementation of
transit-node routing considered in this section are based on our highway hierarchies. Thus,
at the moment neither of these methods can supersede the highway hierarchies approach.
Actually, the results for highway-node routing are better than the ones published in [29]

Table 3.Comparison between highway hierarchies (HH), the REAL algorithm, transit-node routing (TNR) and highway-
node routing (HNR). For the former three approaches, different parameter settings are examined. ‘disk space’ denotes the
total amount of memory needed to store the preprocessed dataincluding the original graph on disk.

Europe USA (Tiger)

method
PREPROCESSING QUERY PREPROCESSING QUERY

time disk space time #settledtime disk space time #settled
[min] [MB] [ms] nodes [min] [MB] [ms] nodes

HH 13 1 241 0.61 709 15 1 324 0.67 925
HH (mem) 55 697 1.10 1 863 70 942 1.21 2 143
REAL (16,1) 97 1 849 1.22 814 64 3 028 1.14 675
REAL (64,16) 141 1 0151.11 679 121 1 5751.05 540
TNR (eco) 46 2 304 0.0134 N/A 59 3 073 0.0115 N/A
TNR (gen) 164 4 7140.0056 N/A 205 6 1080.0049 N/A
HNR 15 503 0.88 1 017 16 640 0.50 760
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since in the meantime the highway hierarchies have improvedand highway-node routing
directly benefits from that.

6.8 Outputting Complete Path Descriptions

So far, we have reported only the times needed to compute the shortest-path length between
two nodes. Now, we determine a complete description of the shortest path. In Table 4 we
give the additional preprocessing time and the additional disk space for the unpacking data
structures. Furthermore, we report the additional time that is needed to determine a complete
description of the shortest path and to traverse7 it summing up the weights of all edges as
a sanity check—assuming that the query to determine the shortest-path length has already
been performed. That means that the total average time to determine a shortest path is the
time given in Table 4 plus the query time given in previous tables8. Note that Variant 1 is
no longer supported by the current version of our implementation so that the numbers in the
first data row of Table 4 have been obtained with an older version and different settings.

We can conclude that even Variant 3 requires little additional preprocessing time and
only a moderate amount of space. With Variant 3, the time for outputting the path remains
considerably smaller than the time to determine the path length and a factor 3–5 smaller
than using Variant 2. The US graph profits more than the European graph since it has paths
with considerably larger hop counts, perhaps due to a largernumber of degree two nodes in
the input. Note that due to cache effects, the time for outputting the path using preprocessed
shortcuts is likely to be considerably smaller than the timefor traversing the shortest path in
the original graph.

Table 4. Additional preprocessing time, additional disk space and query time that is needed to determine a complete de-
scription of the shortest path and to traverse it summing up the weights of all edges—assuming that the query to determine
its lengths has already been performed. Moreover, the average number of hops—i.e., the average path length in terms of
number of nodes—is given. The three algorithmic variants are described in Section 5.4.

Europe USA (Tiger)
preproc. space query # hopspreproc. space query # hops

[s] [MB] [ms] (avg.) [s] [MB] [ms] (avg.)
Variant 1 0 0 17.22 1 366 0 0 39.69 4 410
Variant 2 69 126 0.49 1 366 68 127 1.16 4 410
Variant 3 74 225 0.19 1 366 70 190 0.25 4 410

6.9 Turning Restrictions

We did an experiment with the German road network (a subgraphof our European network)
and real-world turning restrictions (also provided by PTV)to verify our expectation that
incorporating the restrictions into the graph has only a little effect on the performance. The
results are positive: the preprocessing time does not change, the total number of nodes and
edges in the highway hierarchy only increases by 4%, and the query times rise by 3%.

6.10 Distance Metric

When we apply a distance metric instead of the usual (and for most practical applications
more relevant) travel time metric, the hierarchy that is inherent in the road network is less

7 Note that we donot traverse the path in the original graph, but we directly scanthe assembled description of the path.
8 Note that in the current implementation outputting path descriptions and the feature to rearrange nodes by level are

mutually exclusive. However, this is not a limitation in principle.
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distinct since the difference between fast and slow roads fades. We no longer observe the
self-similarity in the sense that a fixed neighbourhood sizeyields an almost constant shrink-
ing factor. Instead, we have to use an increasing sequence ofneighbourhood sizes to ensure
a proper shrinking. For Europe, we useH =100, 200, 300, 400, 500 to construct five levels
before an all-pairs distance table is built. Constructing the hierarchy takes 34 minutes and
entails a memory overhead of 36 bytes per node. On average, a random query then takes
4.88 ms, settling 4 810 nodes and relaxing 33 481 edges. Further experiments on different
metrics can be found in [26].

6.11 An Even Larger Road Network

Very recently, we obtained a new version of the European roadnetwork that is larger than the
old one and covers more countries9. It has been provided for scientific use by the company
ORTEC and consists of 33 726 989 nodes and 75 108 089 directed edges. We use the same
parameters as for the old version (in particular,H = 30) and observe a very good shrinking
behaviour: we have 1.87 times as many nodes in the beginning,but after the construction of
the same number of levels only 1.04 times as many nodes remain. Thus, the same number of
levels is sufficient, only the distance table gets slightly bigger. We arrive at a preprocessing
time of 18 minutes, a memory overhead of 37 bytes per node, andquery times of 0.60 ms
for random queries; on average, 685 nodes are settled and 2 457 edges are relaxed.

7 Discussion

Highway hierarchies are a simple, robust and space-efficient concept that allows very ef-
ficient exact fastest-path queries even in huge real-world road networks. These attributes
have been confirmed in an extensive experimental study. Although highway hierarchies are
already very useful when applied directly, their usefulness extends to a much wider range:
some concepts like the contraction of a network have turned out to be advantageous for other
speedup techniques as well; they can be extended to deal withmany-to-many queries; the
currently fastest shortest-path algorithm for static roadnetworks is based on them; an effi-
cient approach to dealing with dynamic scenarios like traffic jams uses highway hierarchies
in its preprocessing phase;. . .

Nevertheless, a lot of interesting questions remain. How tohandle mobile devices with
limited fast memory? How to deal with multiple objective functions or with time-dependent
edge weights? What about public transportation networks?

We are optimistic that highway hierarchies and related methods are a promising starting
point to tackle several of these problems.
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11. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D.,Willhalm, T.: Partitioning graphs to speed up Dijkstra’s algo-
rithm. In: 4th International Workshop on Efficient and Experimental Algorithms. (2005) 189–202
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A Query—Proof of Correctness

Additional Notations.‘◦’ denotespath concatenation. succ(u, P ) andpred(u, P ) denote the
direct successor and predecessor ofu onP , respectively. We just writesucc(u) andpred(u)
if the path is clear from the context. For two nodesu andv on some path,min(u, v) denotesu
if u � v andv otherwise.max(u, v) is defined analogously.dP (u, v) := w(P |u→v) denotes
the distance fromu to v along the pathP . Note that for any edge(u, v) on P , we have
w(u, v) = dP (u, v).

A.1 Termination and Special Cases

Since we have set the neighbourhood radius in the topmost level to infinity (R2), we are
never tempted to go upwards beyond the topmost level. This observation is formalised in the
following lemma.

Lemma 2. The for-loop in Line 9 of the highway query algorithm always terminates with
ℓ ≤ L and(ℓ = L→ gap=∞).

Proof. We only consider iterations where the forward search direction is selected; analogous
arguments apply to the backward direction. By an inductive proof, we show that at the
beginning of any iteration of the main while-loop, we haveℓ(u) ≤ L and(ℓ(u) = L →
gap(u) =∞) for any nodeu in

−→
Q .

Base Case:True for the first iteration, where onlys belongs to
−→
Q : we haveℓ(s) = 0 ≤ L

and gap(s) = r→0 (s) (Line 2), which is equal to infinity ifL = 0 (due to R2).
Induction Step:We assume that our claim is true for iterationi and show that it also holds
for iterationi + 1. Due to the induction hypothesis, we haveℓ(u) ≤ L and(ℓ(u) = L →
gap(u) = ∞) in Line 5. If ℓ(u) = L, we have gap= gap′ = r→ℓ(u)(u) = ∞ (Line 7 and
9, R2); thus the for-loop in Line 9 terminates immediately with ℓ = ℓ(u) = L. Otherwise
(ℓ(u) < L), the for-loop either terminates withℓ < L or reachesℓ = L; in the latter case,
we have gap= r→ℓ (u) =∞ (Line 9, R2); hence, the loop terminates.

Thus, in any case, the loop terminates withℓ ≤ L and(ℓ = L→ gap=∞). Therefore,
if the nodev adopts the keyk in Line 13 (either by a decreaseKey or an insert operation),
the new key fulfils the required condition.

This concludes our inductive proof, which also shows that the claim of this lemma holds
during any iteration of the main while-loop. ⊓⊔
It is easy to the see that the following property of Dijkstra’s algorithm also holds for the
highway query algorithm.

Proposition 1. For each search direction, the sequence of distancesδ(u) of settled nodesu
is monotonically increasing.

Now, we can prove that

Lemma 3. The highway query algorithm terminates.

Proof. The for-loop in Line 9 always terminates due to Lemma 2. The for-loop in Line 8
terminates since the edge set is finite. The main while-loop in Line 3 terminates since each
nodev is inserted into each priority queue at most once, namely if it is unreached (Line 13);
if it is reached, it either already belongs to the priority queue or it has already been settled;
in the latter case, we know thatδ(v) ≤ δ(u) ≤ δ(u)+w(e) (Proposition 1; edge weights are
nonnegative) so that no priority queue operation is performed due to the specification of the
decreaseKey operation. ⊓⊔

28



Thespecial casethat there is no path froms to t is trivial. The algorithm terminates due to
Lemma 3 and returns∞ since no node can be settled from both search directions (otherwise,
there would be some path froms to t). For the remaining proof, we assume that a shortest
path froms to t exists in the original graphG.

A.2 Contracted and Expanded Paths

Lemma 4. Shortcuts do not overlap, i.e., if there are four nodesu ≺ u′ ≺ v ≺ v′ on a path
P in G, then there cannot exist both a shortcut(u, v) and a shortcut(u′, v′) at the same time.

Proof. Let us assume that there is a shortcut(u, v) ∈ Sℓ for some levelℓ. All inner nodes,
in particularu′, belong toBℓ. Sinceu′ does not belong toV ′ℓ , a shortcut that starts fromu′

can belong only to some levelk < ℓ. If there was a shortcut(u′, v′) ∈ Sk, the inner nodev
would have to belong toBk, which is a contradiction sincev ∈ V ′ℓ . ⊓⊔
Definition 1. For a given pathP in a given highway hierarchyG, thecontractedpathctr(P )
is defined in the following way: while there is a subpath〈u, b1, b2, . . . , bk, v〉 with u, v ∈ V ′ℓ
andbi ∈ Bℓ, 1 ≤ i ≤ k, k ≥ 1, for some levelℓ, replace it by the shortcut edge(u, v) ∈ Sℓ.

Note that this definition terminates since the number of nodes in the path is reduced by at
least one in each step and the definition is unambiguous due toLemma 4.

Definition 2. For a given pathP in a given highway hierarchyG, the level-ℓ expandedpath
exp(P, ℓ) is defined in the following way: while the path contains a shortcut edge(u, v) ∈ Sk

for somek > ℓ, replace it by the represented path inGk.

Note that this definition terminates since an expanded subpath can only contain shortcuts of
a smaller level.

A.3 Highway Path

Consider a given highway hierarchyG and an arbitrary pathP = 〈s, . . . , t〉. In the following,
we will bring out the structure ofP w.r.t.G.

Last Neighbour and First Core Node.For any levelℓ and any nodeu on P , we define the
last succeeding level-ℓ neighbour−→ω P

ℓ (u) and thefirst succeeding level-ℓ core node−→α P
ℓ (u):

−→ω P
ℓ (u) is the nodev ∈ {x ∈ P | u � x ∧ dP (u, x) ≤ r→ℓ (u)} that maximisesdP (u, v), and
−→α P

ℓ (u) is the nodev ∈ {t} ∪ {x ∈ P ∩ V ′ℓ | u � x} that minimisesdP (u, v). Thelast pre-
ceding neighbour←−ω P

ℓ (u) and thefirst preceding core node←−α P
ℓ (u) are defined analogously.

Unidirectional Labelling. Now, we inductively define a forwardlabelling of the pathP .
The labelss0 and s′0 are set tos and for ℓ, 0 ≤ ℓ < L, we setsℓ+1 := −→ω P

ℓ (s′ℓ) and
s′ℓ+1 := −→α P

ℓ+1(sℓ+1). Furthermore, in order to avoid some case distinctions,sL+1 := t.
For an example, we refer to Figure 9.

Proposition 2. The following properties apply to the (Unidirectional) forward labelling
of P :

– U1: s = s0 = s′0 � s1 � s′1 � . . . � sL � s′L � sL+1 = t
– U2a:∀ℓ, 0 ≤ ℓ ≤ L : ∀u, s′ℓ � u � sℓ+1 : dP (s′ℓ, u) ≤ r→ℓ (s′ℓ)
– U2b:∀ℓ, 0 ≤ ℓ ≤ L : ∀u ≻ sℓ+1 : dP (s′ℓ, u) > r→ℓ (s′ℓ)
– U3: ∀ℓ, 0 ≤ ℓ ≤ L : ∀u, sℓ � u ≺ s′ℓ : u 6∈ V ′ℓ
– U4: ∀ℓ, 0 ≤ ℓ ≤ L : s′ℓ = t ∨ s′ℓ ∈ V ′ℓ

A backward labelling (specifying nodestℓ andt′ℓ) is defined analogously.
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Meeting Level and Point.Themeeting levelλ of P is 0 if s = t andmax{ℓ | sℓ � tℓ} if
s 6= t. Note thatλ ≤ L (in any case) andtλ+1 ≺ sλ+1 (in case thats 6= t). Themeeting point
p of P is eithertλ (if tλ � s′λ) or min(sλ+1, t

′
λ) (otherwise). Figure 10 gives an example.

Proposition 3. The following properties apply to the Meeting pointp of P :

– M1: sλ � p � tλ
– M2: tλ+1 � p � sλ+1

– M3: ∀ℓ, 0 ≤ ℓ ≤ L : (s′ℓ ≺ p→ p � t′ℓ) ∧ (p ≺ t′ℓ → s′ℓ � p)

Proof. The cases = t is trivial. Subsequently, we assumes 6= t. In order to prove M1, M2,
and (M3 forℓ = λ), we distinguish between two cases.
Case 1:tλ � s′λ. Then,p = tλ. M1 is fulfilled due to the definition of the meeting level,
which impliessλ � tλ. Furthermore, due to U1, we havetλ+1 � t′λ � tλ = p � s′λ � sλ+1

so that M2 and (M3 forℓ = λ) are fulfilled.
Case 2:s′λ ≺ tλ. Then,p = min(sλ+1, t

′
λ).

Subcase 2.1:sλ+1 � t′λ. Then,p = sλ+1. We havesλ � s′λ � sλ+1 = p � t′λ � tλ so that
M1 and (M3 forℓ = λ) are fulfilled. Furthermore, M2 holds due totλ+1 ≺ sλ+1.
Subcase 2.2:t′λ ≺ sλ+1. Then,p = t′λ. Sinces′λ ≺ tλ � t, we know thats′λ ∈ V ′λ (due to
U4). Thus, we haves′λ � t′λ � tλ (otherwise (t′λ ≺ s′λ � tλ), we would have a contradiction
with U3). Hence,sλ � s′λ � t′λ = p � tλ so that M1 and (M3 forℓ = λ) are fulfilled. M2
holds as well sincetλ+1 � t′λ = p ≺ sλ+1.

It remains to show M3 forℓ < λ and forℓ > λ. In the former case, M3 holds due to M1,
which impliess′ℓ � sλ � p � tλ � t′ℓ (U1). In the latter case, M3 holds due to M2, which
impliest′ℓ � tλ+1 � p � sλ+1 � s′ℓ (U1). ⊓⊔

Highway Path.P = 〈s, . . . , t〉 is ahighway path(Figure 11) iff the following two Highway
properties are fulfilled:

– H1: ∀ℓ, 0 ≤ ℓ ≤ L : H1(ℓ)
– H2: ∀ℓ, 0 ≤ ℓ ≤ L : H2(ℓ)

where

– H1(ℓ): ∀(u, v), s′ℓ � u ≺ v � t′ℓ : u, v ∈ V ′ℓ
– H2(ℓ): ∀(u, v), sℓ � u ≺ v � tℓ : ℓ(u, v) ≥ ℓ

A.4 Reachability Along a Highway Path

We consider a pathP = 〈s, . . . , t〉. For a nodeu onP , we define thereference levelℓ (u) :=
max({0} ∪ {i | si ≺ u}).

Proposition 4. For any two nodesu andv with u � v, the following reference Level prop-
erties apply:

– L1: 0 ≤ ℓ (u) ≤ L
– L2: sℓ (u) � u
– L3: u � sℓ (u)+1

– L4: ℓ (u) ≤ ℓ (v)

Definition 3. A nodeu is said to beAppropriatelyreached/settled with the keyk = (δ(u),
ℓ(u), gap(u)) on the pathP iff all of the following conditions are fulfilled:

– A1(k, u): δ(u) = d0(s, u)
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– A2(k, u): ℓ(u) = ℓ (u)

– A3(k, u): gap(u) =

{∞ if u � s′ℓ(u)

r→ℓ(u)(s
′

ℓ(u))− dP (s′ℓ(u), u) otherwise
– A4(u): ∀i : t 6= s′i � u→ u ∈ V ′i

The following (somewhat technical) lemma will be used to prove Lemmas 6 and 7. Basi-
cally, it states that in the highway query algorithm the search level and the gap to the next
applicable neighbourhood border are set correctly.

Lemma 5. Consider a pathP = 〈s, . . . , t〉 and an edge(u, v) onP . Assume thatu is settled
by the highway query algorithm appropriately with some keyk. We consider the attempt to
relax the edge(u, v). After Line 9 has been executed, the following Invariants apply w.r.t.
the variablesℓ and gap:

– I1: (a) sℓ � u ∧ (b) v � sℓ+1

– I2: ℓ = ℓ (v)

– I3: gap=

{
∞ if v � s′ℓ,
r→ℓ (s′ℓ)− dP (s′ℓ, u) otherwise.

Proof. We distinguish between two cases in order to prove I1 and I3.
Case 1:zero iterations of the for-loop in Line 9 take place (ℓ = ℓ(u)).
In this case, we haveℓ = ℓ(u) andw(u, v) ≤ gap′. Hence,sℓ � u due toA2(k, u) and L2
(⇒ I1a). In order to show I1b and I3, we distinguish between three subcases:

– Subcase 1.1:u ≺ s′ℓ⇒ v � s′ℓ � sℓ+1 (U1) (⇒ I1b). Furthermore, because of gap(u) =
∞ (A3(u, k)), we have gap= gap′ = r→ℓ(u)(u) = ∞ due to U3 and R1 (⇒ I3 since
v � s′ℓ).

– Subcase 1.2:u = s′ℓ ⇒ gap(u) = ∞ (A3(u, k))⇒ w(u, v) ≤ gap′ = r→ℓ (u) (Line 7)
⇒ dP (s′ℓ, v) ≤ r→ℓ (s′ℓ) (sinceu = s′ℓ)⇒ v � sℓ+1 (U2b) (⇒ I1b). Furthermore, gap=
gap′ = r→ℓ (u) = r→ℓ (s′ℓ)− dP (s′ℓ, u) (sinceu = s′ℓ) implies I3 sinces′ℓ ≺ v.

– Subcase 1.3:u ≻ s′ℓ ⇒ gap(u) = r→ℓ (s′ℓ) − dP (s′ℓ, u) (A3(u, k)). By Lemma 2,ℓ ≤ L
and (ℓ = L → gap = ∞). If ℓ = L, we havev � t = sL+1 = sℓ+1 (⇒ I1b) and
gap= ∞ = r→ℓ (s′ℓ) − dP (s′ℓ, u) (R2) (⇒ I3 sinces′ℓ ≺ v). Subsequently, we deal with
the remaining caseℓ < L. The facts thatu � t ands′ℓ ≺ u imply s′ℓ 6= t, which yields
s′ℓ ∈ V ′ℓ due to U4. Hence, due to R3, gap(u) 6=∞⇒ w(u, v) ≤ gap′ = gap(u) (Line 7)
⇒ dP (u, v) ≤ r→ℓ (s′ℓ) − dP (s′ℓ, u)⇒ dP (s′ℓ, v) ≤ r→ℓ (s′ℓ)⇒ v � sℓ+1 (U2b) (⇒ I1b).
Furthermore, gap= gap′ = gap(u) = r→ℓ (s′ℓ)− dP (s′ℓ, u) implies I3 sinces′ℓ ≺ v.

Case 2:at least one iteration of the for-loop takes place (ℓ > ℓ(u)).
We claim that after any iteration of the for-loop, we haveu = sℓ. Proof by induction:
Base Case:We consider the first iteration of the for-loop. Line 9 and thefact that an iteration
takes place implyw(u, v) > gap′, which means that gap′ 6=∞. We distinguish between two
subcases to show thatdP (s′ℓ(u), v) > r→ℓ(u)(s

′

ℓ(u)).

– Subcase 2.1:u � s′ℓ(u)⇒ gap(u) =∞ (A3(u, k))⇒ w(u, v) > gap′ = r→ℓ(u)(u) (Line 7)
⇒ r→ℓ(u)(u) 6= ∞. We havesℓ(u) � u � s′ℓ(u) due to L2,A2(u, k), and the assumption of
Subcase 2.1. However, we can exclude thatsℓ(u) � u ≺ s′ℓ(u): this would implyu 6∈ V ′ℓ(u)

(U3) and, thus,r→ℓ(u)(u) =∞ (R1). Therefore,u = s′ℓ(u)⇒ dP (s′ℓ(u), v) > r→ℓ(u)(s
′

ℓ(u))

– Subcase 2.2:u ≻ s′ℓ(u) ⇒ s′ℓ(u) 6= t ⇒ s′ℓ(u) ∈ V ′ℓ(u) (U4). Furthermore, gap(u) =

r→ℓ(u)(s
′

ℓ(u))−dP (s′ℓ(u), u) (A3(u, k))⇒ gap(u) 6=∞ (due to R3 sinceℓ(u) < L (Lemma 2)
ands′ℓ(u) ∈ V ′ℓ(u))⇒ dP (u, v) = w(u, v) > gap′ = gap(u) = r→ℓ(u)(s

′

ℓ(u)) − dP (s′ℓ(u), u)

(Line 7)⇒ dP (s′ℓ(u), v) > r→ℓ(u)(s
′

ℓ(u))
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FromdP (s′ℓ(u), v) > r→ℓ(u)(s
′

ℓ(u)), it follows thatsℓ(u)+1 ≺ v (U2a), which impliessℓ(u)+1 � u.
Hence,u = sℓ(u)+1 (sinceu � sℓ(u)+1 due to L3 andA2(k, u)).
Induction Step:Let us now deal with the iteration from leveli to leveli+1 for i ≥ ℓ(u)+1.
We havew(u, v) > gap = r→i (u), which impliesr→i (u) 6= ∞. Starting withu = si �
s′i � si+1 (induction hypothesis, U1), we can conclude thatu = s′i (U3, R1)⇒ dP (s′i, v) >
r→i (s′i)⇒ si+1 ≺ v (U2a)⇒ si+1 � u⇒ u = si+1 (sinceu � si+1). This completes our
inductive proof.

After the last iteration, we haveu = sℓ � s′ℓ (⇒ I1a). Furthermore,w(u, v) ≤ r→ℓ (u). If
u ≺ s′ℓ, we obtainv � s′ℓ � sℓ+1 (⇒ I1b) and gap= r→ℓ (u) = ∞ due to U3 and R1 (⇒ I3
sincev � s′ℓ). Otherwise (u = s′ℓ), we getdP (s′ℓ, v) ≤ r→ℓ (s′ℓ), which impliesv � sℓ+1 as
well (U2b) (⇒ I1b); furthermore, gap= r→ℓ (u) = r→ℓ (s′ℓ)−dP (s′ℓ, u) (sinceu = s′ℓ) implies
I3 sinces′ℓ ≺ v. This completes the proof of I1 and I3.

I2 (ℓ (v) = ℓ) directly follows fromsℓ ≺ v � sℓ+1 (I1). ⊓⊔

Lemma 6. Consider a highway pathP = 〈s, . . . , t〉 and an edge(u, v) on P such thatu
precedes the meeting pointp. Assume thatu has been appropriatelysettled. Then, the edge
(u, v) is not skipped, but relaxed.

Proof. We consider the relaxation of the edge(u, v). Due to Lemma 5, the Invariants I1–
I3 apply after Line 9 has been executed. Now, we consider Line10 of the highway query
algorithm.

I1 and M2 implysℓ � u ≺ p � sλ+1. Hence,ℓ ≤ λ. Thus,u ≺ p � tλ � tℓ (M1). By
H2, we obtainℓ(u, v) ≥ ℓ. Therefore, the edge(u, v) is not skipped at this point.

Moreover, we prove that the condition in Line 11 is not fulfilled since(u, v) belongs to a
highway path. This means that the edge(u, v) is not skipped at this point, either. We have to
show thatu 6∈ V ′ℓ ∨ v 6∈ Bℓ. We havesℓ � u (I1). If u ≺ s′ℓ, we getu 6∈ V ′ℓ (U3). Otherwise,
we haves′ℓ � u ≺ v � p � t′ℓ (M3), which yieldsv 6∈ Bℓ (H1).

Therefore,(u, v) is not skipped, but relaxed. ⊓⊔

Lemma 7. Consider a shortest pathP = 〈s, . . . , t〉 and an edge(u, v) on P . Assume that
u has been appropriatelysettledwith some keyk. Furthermore, assume that the edge(u, v)
is not skipped, but relaxed. Then,v can be appropriatelyreachedfromu with keyk′.

Proof. We consider the relaxation of the edge(u, v). Due to Lemma 5, the Invariants I1–I3
apply after Line 9 has been executed. Therefore—since(u, v) is not skipped, but relaxed—,
the nodev can be reached with the key

k′ = (δ′(v), ℓ′(v), gap′(v)) := (δ(u) + w(u, v), ℓ, gap− w(u, v)).

Thus,A1(k
′, v), A2(k

′, v), andA3(k
′, v) hold sinceP is a shortest path and due toA1(k, u),

I2, and I3.
Consider an arbitraryi such thatt 6= s′i � v. To proveA4(v), we have to show that

v ∈ V ′i . Due to U4, this is true fors′i = v. Now, we deal with the remaining cases′i � u ≺ v.
Sincev � sℓ+1 � s′ℓ+1 (I1, U1), we havei ≤ ℓ. The caseℓ = 0 is trivial; hence, we
assumeℓ > 0. Since the edge(u, v) is not skipped, we know that Restriction 1 does not
apply. Therefore, we haveℓ(u, v) ≥ ℓ, which impliesv ∈ Vℓ ⊆ V ′ℓ−1. For i < ℓ, we have
V ′ℓ−1 ⊆ V ′i and are done. Fori = ℓ, we haveu ∈ V ′ℓ due toA4(u). This impliesv 6∈ Bℓ since
Restriction 2 does not apply as well.v ∈ Vℓ andv 6∈ Bℓ yield v ∈ V ′ℓ . ⊓⊔

Analogous considerations hold for the backward search.
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A.5 Finding an Optimal Path

Source and target nodess andt are given such that a shortest path froms to t exists.10

Definition 4. A statez is a triple(P, u, u), whereP is as-t-path,u, u ∈ V ∩P , andu � u.

Definition 5. A statez = (P, u, u) is valid iff all of the following valid State properties are
fulfilled:

– S1:w(P ) = d0(s, t)
– S2:P |u→u is contracted, i.e.,P |u→u = ctr(P |u→u)
– S3:P |s→u andP |u→t are paths in the forward and backward search tree, respectively.

Lemma 8. Consider a valid statez = (P, u, u) and an arbitrary nodex, s � x � u, onP .
Then,x has been appropriately settled. Analogously for backward search.

Proof. Base Case:True for s. Induction Step:We assume thaty, s � y ≺ u, has been
appropriately settled and show thatx = succ(y) is appropriately settled as well. Since(y, x)
belongs to the forward search tree (S3), we know that(y, x) is not skipped, but relaxed. The
other prerequisites of Lemma 7 are fulfilled as well (due to the induction hypothesis and S1).
Thus, we can conclude thatx can be appropriatelyreachedfrom y. Since(y, x) belongs to
the forward search tree, we know thatx is alsosettledfrom y. ⊓⊔

Lemma 9. If z = (P, u, u) is a valid state, thenP is a highway path.

Proof. All labels (e.g.,s′ℓ) in this proof refer toP . We show that the highway properties H1
and H2 are fulfilled by induction over the levelℓ.
Base Case:H2(0) trivially holds sinceℓ(u, v) ≥ 0 for anyedge(u, v).
Induction Step (a):H2(ℓ)→ H1(ℓ). We assumes′ℓ ≺ t′ℓ. (Otherwise, H1(ℓ) is trivially ful-
filled.) This impliess′ℓ 6= t. Consider an arbitrary nodex onP |s′

ℓ
→t′

ℓ
. We distinguish between

three cases.
Case 1:x � u. According to Lemma 8,A4(x) holds. Hence,x ∈ V ′ℓ sinces′ℓ � x.
Case 2:u � x � u. We havey := max(u, s′ℓ) ∈ V ′ℓ (either by Lemma 8:A4(u) or by U4).
Analogously,y := min(u, t′ℓ) ∈ V ′ℓ . Sinceu � y � x � y � u andP |u→u = ctr(P |u→u)
(S2), we can conclude thatx 6∈ Bℓ. Furthermore, we havex ∈ Vℓ (due to H2(ℓ)). Thus,
x ∈ V ′ℓ .
Case 3:u � x. Analogous to Case 1.
Induction Step (b):H1(ℓ)∧H2(ℓ)→H2(ℓ+1). LetP denoteexp(P |s′

ℓ
→t′

ℓ
, ℓ) and consider an

arbitrary edge(x, y) onP . If (x, y) is part of an expanded shortcut, we haveℓ(x, y) ≥ ℓ + 1
andx, y ∈ Vℓ+1 ⊆ V ′ℓ . Otherwise,(x, y) belongs toP |s′

ℓ
→t′

ℓ
, which is a subpath ofP |sℓ→tℓ,

which impliesx, y ∈ V ′ℓ andℓ(x, y) ≥ ℓ by H1(ℓ) and H2(ℓ). Thus, in any case,ℓ(x, y) ≥ ℓ,
x, y ∈ V ′ℓ , and(x, y) is not a shortcut of some level> ℓ. Hence,P is a path inG′ℓ. Now,
consider an arbitrary edge(u, v), sℓ+1 � u ≺ v � tℓ+1, onP . If (u, v) is a shortcut of some
level> ℓ, we directly haveℓ(u, v) ≥ ℓ+1. Otherwise,(u, v) is onP as well. Sincesℓ+1 ≺ v,
we havedP (s′ℓ, v) > r→ℓ (s′ℓ) (U2b). Moreover, S1 implies thatP is a shortest path inG′ℓ and,
in particular,dP (s′ℓ, v) = w(P |s′

ℓ
→v) = dℓ(s

′
ℓ, v). Using the fact thatdP (s′ℓ, v) = dP (s′ℓ, v),

we obtaindℓ(s
′
ℓ, v) > r→ℓ (s′ℓ) and, thus,v 6∈ N→ℓ (s′ℓ).

Analogously, we haveu 6∈ N←ℓ (t′ℓ). Hence, the definition of the highway networkGℓ+1

implies(u, v) ∈ Eℓ+1. Thus,ℓ(u, v) ≥ ℓ + 1. ⊓⊔

Definition 6. A valid state is either afinal state (ifu = u) or a non-finalstate (otherwise).

10 The special case that there is no path froms to t is treated in Section A.1.
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We pick any shortests-t-pathP . The state(ctr(P ), s, t) is the initial state. Since forward
and backward search run completely independently of each other, any serialisation of both
search processes will yield exactly the same result. Therefore, in our proof, we are free
to pick—w.l.o.g.—any order of forward and backward steps. We assume that at first one
forward and one backward iteration is performed, which implies thats andt are settled. At
this point, the highway query algorithm is in the initial state. It is easy to see that the initial
state is a valid state. Due to the following lemma, it is sufficient to prove that a final state is
eventually reached.

Lemma 10. Getting to a final state is equivalent to finding a shortests-t-path.

Proof. u = u means that forward and backward search meet. Due to Lemma 8, we can
conclude that bothu andu are settled with the optimal distance (A1), i.e.,

−→
δ (u) = d0(s, u)

and
←−
δ (u) = d0(u, t). Sinceu = u lies on a shortest path (due to S1), we haved(s, t) =

d0(s, u) + d0(u, t). Line 6 impliesd′ ≤ −→δ (u) +
←−
δ (u) = d(s, t). In fact, this means that the

algorithm returnsd′ = d(s, t) since this is already optimal. ⊓⊔

Definition 7. For a valid statez = (P, u, u), the forward direction is said to beblockedif
p � u. Analogously, the backward direction is blocked ifu � p.

Lemma 11. For a non-final statez = (P, u, u), at most one direction is blocked.

Proof. Sincez is a non-final state, we haveu ≺ u, which impliesu ≺ p or p ≺ u. ⊓⊔

Definition 8. Therankρ(z) of a statez = (P, u, u) is |{x ∈ P | u � x � u}|.

Lemma 12. From any non-final statez = (P, u, u), another valid statez+ is reached at
some point such thatρ(z+) < ρ(z).

Proof. We pick any non-blocked direction—due to Lemma 11, we know that there is at
least one such direction. Subsequently, we assume that the forward direction was picked;
the backward direction can be dealt with analogously.

We haveu ≺ p and observe that all prerequisites of Lemma 6 are fulfilled due to Lem-
mas 9 and 8. Hence, we can conclude that the edge(u, v := succ(u)) is not skipped, but
relaxed. Thus, sinceP is a shortest path (S1),v can be reached with the optimal distance due
to Lemma 7 (A1). The fact that the algorithm terminates (Lemma 3) implies that the queue

−→
Q

gets empty at some point, i.e., every element has been deleted from
−→
Q . In particular, we can

conclude thatv is deleted at some point. Sincev has been reached with the optimal distance,
it will also be settled with the optimal distance (due to the specification of the decreaseKey
operation, which guarantees that tentative distances are never increased). LetP ′ denote the
path froms to v in the forward search tree. We setz+ := (P+ := P ′ ◦P |v→t, v, u). We have
w(P+) = w(P ′) + w(P |v→t) = d0(s, v) + d0(v, t) = d0(s, t) (⇒ S1). S2 is fulfilled since
P+|v→u is a subpath ofP |u→u. S3 holds due to the construction ofP+. Hence,z+ is valid.
Furthermore,ρ(z+) = ρ(z)− 1. ⊓⊔

Theorem 5. The highway query algorithm finds a shortests-t-path.

Proof. From Lemma 12 and the fact that the codomain of the rank function is finite, it
follows that eventually a final state is reached, which is equivalent to finding a shortests-t-
path due to Lemma 10. ⊓⊔
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A.6 Distance Table Optimisation

To prove the correctness of the distance table optimisation, we introduce the following new
lemma and adapt a few definitions and proofs from Section A.5 to the new situation.

Lemma 13. Consider a valid statez = (P, u, u) with u ≺ s′L. Whenu’s edges are relaxed,
neither the condition in Line 7a nor the condition in Line 11ais fulfilled.

Proof. Due to Lemma 8,u has been appropriately settled with some keyk. We distinguish
between two cases.
Case 1:u ≺ sL. Fromsℓ(u) = sℓ (u) � u ≺ sL (A2(k, u), L2), it follows thatℓ(u) < L (U1).
Hence, the condition in Line 7a is not fulfilled. Furthermore, we havesℓ � u ≺ sL after
Line 9 has been executed (Lemma 5: I1). Thus,ℓ < L, which implies that the condition in
Line 11a is not fulfilled as well.
Case 2:sL � u ≺ s′L. First, we show that the condition in Line 7a is not fulfilled.We
assumeℓ(u) = L. (Otherwise, the condition cannot be fulfilled.) Due toA3(k, u), we have
gap(u) = ∞. Hence, gap′ = r→ℓ(u)(u) = r→L (u) = ∞1 by R1 sinceu 6∈ V ′L (U3). Now, we
prove that the condition in Line 11a is not fulfilled. We assumeℓ = L∧ℓ > ℓ(u). (Otherwise,
the condition cannot be fulfilled.) Due to Line 9, we get gap= r→ℓ (u) = r→L (u) = ∞1 (as
above). ⊓⊔
Definition 6’. A valid state is either afinal state (ifu = u or s′L � u∧u � t′L) or a non-final
state (otherwise).

Lemma 10.Getting to a final state is equivalent to finding a shortests-t-path.

Proof. In the proof of this lemma in Section A.5, we have already dealt with the caseu = u.
Now, consider the new caseu ≺ u ∧ s′L � u ∧ u � t′L. We show thats′L is added to the
set
−→
I . Sinces′L � u, s′L has been appropriately settled with some keyk (due to Lemma 8).

We consider the attempt to relax the edge(s′L, v := succ(s′L)) and distinguish between two
cases.
Case 1:sL = s′L. ℓ = ℓ (v) (I2), sL = s′L ≺ v, andℓ (v) ≤ L (L1) imply ℓ = ℓ (v) = L.
Furthermore,A2(k, s′L) and the assumption of Case 1 yieldℓ(s′L) = ℓ (s′L) < L = ℓ. In
addition, gap=∞2 6=∞1 by I3 (sinces′ℓ ≺ v), the fact thats′L ∈ V ′L (U4), and R2. Hence,
the condition in Line 11a is fulfilled so thats′L is added to

−→
I .

Case 2:sL ≺ s′L. By A2(k, s′L), A3(k, s′L), the assumption of Case 2, andℓ (s′L) ≤ L (L1),
we getℓ(s′L) = ℓ (s′L) = L and gap(s′L) = ∞. Thus, gap′ = r→L (s′L) = ∞2 6= ∞1 (R2).
Hence, the condition in Line 7a is fulfilled so thats′L is added to

−→
I .

Analogously, we can prove thatt′L is added to the set
←−
I . SinceP is a highway path

(due to Lemma 9), the subpathP |s′
L
→t′

L
is a path inG′L and, thus,d0(s

′
L, t′L) = dL(s′L, t′L).

Hence,w(P ) = d0(s, s
′
L) + dL(s′L, t′L) + d0(t

′
L, t) is the length of a shortests-t-path and,

since the algorithm finds a path with a length≤ −→δ (s′L) + dL(s′L, t′L) +
←−
δ (t′L) and since−→

δ (s′L) = d0(s, s
′
L) and

←−
δ (t′L) = d0(t

′
L, t) (due to Lemma 8:A1), we can conclude that a

shortests-t-path is found. ⊓⊔
Definition 7’. For a valid statez = (P, u, u), the forward direction is said to beblockedif
p � u or s′L � u. Analogously, the backward direction is blocked ifu � p or u � t′L.

Lemma 11.For a non-final statez = (P, u, u), at most one direction is blocked.

Proof. Sincez is a non-final state, we haveu ≺ u and(u ≺ s′L ∨ t′L ≺ u). To obtain a
contradiction, let us assume that both directions are blocked, i.e., (p � u or s′L � u) and
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(u � p or u � t′L). Consider the casep � u andu � t′L. Hence,p � u ≺ u � t′L. Due to
M3, we can conclude thats′L � p � u. Sinces′L � u andu � t′L, we have a contradiction.
The remaining three cases are analogous or straightforward. ⊓⊔
Lemma 12. From any non-final statez = (P, u, u), another valid statez+ is reached at
some point such thatρ(z+) < ρ(z).

Proof. The proof of this lemma in Section A.5 still works since the added two lines (7a and
11a) have no effect due to Definition 7’ and Lemma 13. ⊓⊔

B Implementation

The graph is represented asadjacency array, which is a very space-efficient data structure
that allows fast traversal of the graph. There are two arrays, one for the nodes and one for the
edges. The edges(u, v) are grouped by the source nodeu and store only the ID of the target
nodev and the weightw(u, v). Each nodeu stores the index of its first outgoing edge in the
edge array. In order to allow a search in the backward graph, we have to store an edge(u, v)
also as backward edge(v, u) in the edge group of nodev. In order to distinguish between
forward and backward edges, each edge has a forward and a backward flag. By this means,
we can also store two-way edges{u, v} (which make up the large majority of all edges in a
real-world road network) in a space-efficient way: we keep only one copy of(u, v) and one
copy of(v, u), in each case setting both direction flags.

The basic adjacency array has to be extended in order to incorporate the level data that is
specific to highway hierarchies. In addition to the index of the first outgoing edge, each node
u stores its level-0 neighbourhood radiusr0(u). Moreover, for each nodeu, all outgoing
edges(u, v) are grouped by their levelℓ(u, v). Between the node and the edge array, we
insert another layer: for each nodeu and each levelℓ > 0 thatu belongs to, there is alevel
nodeuℓ that stores the radiusrℓ(u) and the index of the first outgoing edge(u, v) in level ℓ.
All level nodes are stored in a single array. Each nodeu keeps the index of the level node
u1. Figure 16 illustrates the graph representation.

r0nodes

level nodes

edges

· · ·

· · ·

r0

r1 r2 r3 r4 r3r2r1 · · ·

Fig. 16.An adjacency array, extended by a level-node layer.

To obtain a robust implementation, we include extensive consistency checks in assertions
and perform experiments that are checked against referenceimplementations, i.e., queries
are checked against Dijkstra’s algorithm and the fast preprocessing algorithm is checked
against a naive implementation.
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C Experiments

In addition to the experiments presented in Section 6.3, we have considered many more
combinations of neighbourhood size, contraction rate, andnumber of levels. The results are
given in Table 5 and 6.

Table 5.Preprocessing and query performance for the European road network depending on the contraction ratec and the
neighbourhood sizeH . We do not use a distance table, but repeat the construction process until the topmost level is empty
or the hierarchy consists of 15 levels.

contr. nbh.
PREPROCESSING QUERY

ratec sizeH
time ∅overhead/

∅deg.
time #settled #relaxed

[min] node [byte] [ms] nodes edges

0.5

30 83 30 3.2391.73 472 326 1 023 944
40 83 28 3.2267.57 334 287 711 082
50 87 27 3.2188.55 242 787 506 543
60 86 27 3.2135.27 177 558 362 748
70 87 26 3.2101.36 135 560 271 324
80 89 26 3.1 73.40 99 857 196 150
90 87 25 3.1 55.02 75 969 146 247

1.0

30 15 28 3.7 5.48 6 396 23 612
40 15 28 3.7 2.62 3 033 11 315
50 17 27 3.6 2.13 2 406 8 902
60 18 27 3.6 1.93 2 201 8 001
70 19 26 3.6 1.80 2 151 7 474
80 20 26 3.6 1.79 2 193 7 392
90 22 26 3.6 1.78 2 221 7 268

1.5

30 11 28 3.8 1.93 1 830 9 281
40 12 28 3.8 1.72 1 628 7 672
50 13 27 3.7 1.56 1 593 6 975
60 14 27 3.7 1.53 1 645 6 697
70 15 27 3.7 1.51 1 673 6 590
80 17 27 3.7 1.51 1 726 6 719
90 18 27 3.7 1.54 1 782 6 655

2.0

30 11 29 4.0 1.85 1 542 8 913
40 11 29 3.9 1.64 1 475 7 646
50 12 28 3.9 1.48 1 470 6 785
60 14 28 3.8 1.46 1 506 6 650
70 15 28 3.8 1.45 1 547 6 649
80 16 27 3.8 1.49 1 611 6 935
90 17 27 3.8 1.53 1 675 6 988

2.5

30 11 30 4.1 1.96 1 489 9 175
40 11 29 4.0 1.70 1 453 7 822
50 12 29 4.0 1.58 1 467 7 119
60 14 29 3.9 1.57 1 493 7 035
70 15 28 3.9 1.54 1 536 6 905
80 16 28 3.9 1.55 1 583 7 094
90 18 28 3.9 1.58 1 645 7 204
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Table 6.Preprocessing and query performance for the European road network depending on the number of levels and the
neighbourhood sizeH . In the topmost level, a distance table is used.

#levels
nbh.

PREPROCESSING QUERY

sizeH
time ∅overhead/

∅deg.
time #settled #relaxed

[min] node [byte] [ms] nodes edges

5

40 14 60 3.90.67 691 2 398
50 13 40 3.90.77 818 2 892
60 14 32 3.80.87 938 3 361
70 15 30 3.80.96 1 058 3 837
80 16 28 3.81.05 1 165 4 278
90 17 28 3.81.13 1 269 4 697

6

30 12 48 4.00.75 709 2 531
40 11 33 3.90.87 867 3 171
50 12 29 3.90.99 1 015 3 759
60 13 28 3.81.10 1 157 4 299
70 15 28 3.81.21 1 292 4 837
80 16 28 3.81.30 1 414 5 311
90 17 27 3.81.40 1 521 5 817

7

30 10 34 4.00.93 852 3 195
40 11 29 3.91.07 1 025 3 894
50 12 28 3.91.20 1 187 4 538
60 13 28 3.81.32 1 344 5 166
70 15 28 3.81.39 1 462 5 689
80 16 27 3.81.47 1 578 6 179
90 18 27 3.81.53 1 668 6 661

8

30 10 30 4.01.14 991 3 853
40 11 29 3.91.27 1 171 4 624
50 12 28 3.91.36 1 321 5 283
60 14 28 3.81.43 1 455 5 887
70 15 28 3.81.46 1 546 6 338
80 16 27 3.81.48 1 611 6 935
90 18 27 3.81.53 1 675 6 988

9

30 10 30 4.01.35 1 123 4 532
40 11 29 3.91.45 1 289 5 338
50 12 28 3.91.48 1 417 5 931
60 14 28 3.81.47 1 506 6 429
70 15 28 3.81.46 1 547 6 649

10

30 10 29 4.01.54 1 241 5 214
40 11 29 3.91.57 1 380 6 012
50 12 28 3.91.51 1 468 6 470
60 14 28 3.81.46 1 506 6 650

11
30 10 29 4.01.67 1 326 5 847
40 11 29 3.91.65 1 445 6 627
50 13 28 3.91.49 1 470 6 785

38


