Highway Hierarchies Star*

Daniel Delling, Peter Sanders, Dominik Schultes, and DwatVNagner

Universitat Karlsruhe (TH), 76128 Karlsruhe, Germany,
{del i ng, sanders, schul t es, wagner }@r a. uka. de

Abstract. We study two speedup techniques for route planning in roadarks: highway hierarchies
(HH) and goal directed search using landmarks (ALT). It $uont that there are several interesting syn-
ergies. Highway hierarchies yield a way to implement landnselection more efficiently and to store
landmark information more space efficiently than beforeT Ajives queries in highway hierarchies an ex-
cellent sense of direction and allows some pruning of thechespace. For computing shortest distances
and approximately shortest travel times, this combinayiefds a significant speedup over HH alone. We
also explain how to compute actual shortest paths very exffilgi.

1 Introduction

Computing fastest routes in a road netwoéks= (V, E) from a sources to a targett is
one of the showpieces of real-world applications of algymnics. In principle, we could use
DIJKSTRA's algorithm [1]. But for large road networks this would bet@ao slow. Therefore,
there is considerable interest in speedup techniques tibe planning.

A classical technique that gives a speedup of around twoolad networks idbidirec-
tional searchwhich simultaneously searches forward freanand backwards from until
the search frontiers meet. Most speedup techniques ugediidnal search as an (optional)
ingredient.

Another classical approach is goal direction ¥ia search[2]: lower bounds define a
vertex potential that directs search towards the targas dpproach was recently shown to
be very effective if lower bounds are computed using preagetgbshortest path distances
to a carefully selected set of about R&ndmarknodes [3, 4] using th&riangle inequality
(ALT). Speedups up to a factor 30 over bidirectionalKB3TRA can be observed.

A property of road networks worth exploiting is their inhetdiierarchy. Commercial
systems use information on road categories to speed uphsé&idficiently far away’
from source and target, only ‘important’ roads are useds Téguires manual tuning of the
data and a delicate tradeoff between computation speedudagismality of the computed
routes. In a previous paper [5] we introduced the ideautomaticallycomputehighway
hierarchiesthat yieldoptimal routesuncompromisingly quicklyThis was the first speedup
technique that was able to preprocess the road network oftaneat in realistic time and ob-
tain large speedups (several thousands) ovek £rrA’'s algorithm. In [6] the basic method
was considerably accelerated using many small measuressargtlistance tablesshortest
path distances in the highest level of the hierarchy aregongaited. This way, it suffices to
search locally around source and target node until the esstqgeaith distance can be found by
accessing the distance table.

A different hierarchy based method—reach based routing-pfpfits considerably from
a combination with ALT [8]. The present state of affairs iattthe combined method from

* Partially supported by DFG grant SA 933/1-3. and by the Feuund Emerging Technologies Unit of EC (IST priority
— 6th FP), under contract no. FP6-021235-2 (project ARRIVAL

[8] shows performance somewhat inferior to highway hidraes with distance tables but
without goal direction. Both methods turn out to be clos@lated. In particular, [8] uses
methods originally developed for highway hierarchies tbiewe fast preprocessing. Here,
we explore the natural question how highway hierarchiedeaztombined with goal directed
search in general and with ALT in particular.

1.1 Overview and Contributions

In the following sections we first review highway hierarchia Section 2 (Algorithm HH)
[6]. A new result presented there is a very fast algorithmefqgulicitly computing the short-
est paths by precomputing unpacked versions of shortciesed®ection 3 reviews Algo-
rithm ALT [3, 4] and introduces refined algorithms for selegtlandmarks. The main in-
novation there is restricting landmark selection to nodesigher levels of the highway
hierarchy.

The actual integration of highway hierarchies with ALT (Atghm HH") is introduced
in Section 4. This is nontrivial in several respects. Fomegke, we need incremental access
to the distance tables for finding upper bounds and a diftesay to control the progress
of forward and backward search. We also have to overcomertiegm that search cannot
be stopped when search frontiers meet. On the other hand,dhe several simplifications
compared to ALT. Abandoning the reliance on a stoppingmoiteallows us to use simpler,
faster, and stronger lower bounds. Using distance tablatas the need for dynamic land-
mark selection. Another interesting approach is to stogéaech when a certain guaranteed
solution quality has been obtained. There are severalestiag further optimisations. In
particular, we can be more space efficient than ALT by stonmd¢andmark information on
the lowest level of the hierarchy. We describe how the mgsgiformation can be recon-
structed efficiently at query time. As a side effect, we idtroe a way to limit the length
of shortcuts. This measure turns out to be of independesrtast since it also improves the
basic HH algorithm.

Section 5 reports extensive experiments performed usiagd metworks of Western Eu-
rope and the USA. Section 6 summarises the results and esipiossible future work.

1.2 MoreReated Work

There are several other approaches to goal directed s€ucHirst candidate for combi-
nation with highway hierarchies weRrecomputed Qister Distanceq9]. PCDs allow the
computation of upper and lower bounds based on precompigtthdes between partitions
of the road networks. These lower bounds cannot be used*feearch since they can pro-
duce negative reduced edge weights. The search spaceltha ptiuned by discontinuing
search at nodeif the lower bound fromv to ¢ indicates that the best upper bound seen so far
cannot possibly be improved. An advantage of PCDs over lankisris that they need less
space. We did not implement this however since PCDs arerraigféective for search in the
lower levels of the hierarchy and since our distance tabtemgation from [6] is already
very effective for pruning search at the higher levels ofttlegarchy. In contrast, landmarks
can be used together with search and thus can direct the search towards the targadlre
in the lower levels of the hierarchy.

An important family of speedup techniques [10-12] assesi@formation with each
edgee. This information specifies a superset of the nodes reacled on some short-

2

est pathGeometric containergl0] require node coordinates and store a simple geomktrica
object containing all the nodes reached via a shortest Rdte flaggartition the graph into
regions. For each edgeand each regio® one bit specifies whether there is a shortest path
via e into regionR [11, 12]. Both techniques alone already contain both dwaahforma-

tion and hierarchy information so that very big speedupspamable to highway hierarchies
can be achieved. However, so far these methods would havieldiamgly large preprocess-
ing times for the largest available road networks. Theeefbese approaches looked not so
interesting for a first attempt to combine goal directed &earith highway hierarchies.

2 Highway Hierarchies

The basic idea of the highway hierarchies approach is thatd®isome local areas around
the source and the target node, only a subset of ‘importaigés has to be considered
in order to be able to find the shortest path. The conceptlota areais formalised by
the definition of a neighbourhood node’saf(v) for each node. Then, the definition of

a highway networkof a graphG = (V, E) that has the property that all shortest paths
are preserved is straightforward: an edgev) € FE belongs to the highway network iff
there are nodes,t € V such that the edg@:, v) appears in the canonical shortest gath
(s,...,u,v,...,t) fromstotin G with the property that ¢ N(s) andu & N(¢).

The size of a highway network (in terms of the number of nodas) be considerably
reduced by a contraction procedure: for each nodere check abypassability criterion
that decides whether should bebypassed-a operation that creates shortcut edgesv)
representing paths of the forfn, v, w). The graph that is induced by the remaining nodes
and enriched by the shortcut edges formstive of the highway network. The bypassability
criterion takes into account the degree of the nedad the number of shortcuts that would
be created ity was bypassed. For details, we refer to [6].

A highway hierarchyf a graphGz consists of several levels), G, G,, ..., G . Level O
corresponds to the original gragh Level 1 is obtained by computing titghway network
of level 0, level 2 by computing the highway network of theecof level 1 and so on.

2.1 Highway Query

In [5], we show how the highway hierarchy of a given graph carcénstructed efficiently.
After that, we can use thkighway query algorithnj6] to perform s-t queries. It is an
adaptation of the bidirectional version of IBSTRA's algorithm. The search startsaand

t in level 0. When the neighbourhood ebr ¢ is left, we switch to level 1 and continue the
search. Similarly, we switch to the next level if the neighiiwod of the entrance point to
the current level is left (Fig. 1). When the core of some |dwet been entered, we never
leave it again: in particular, we do not follow edges thatlema bypassed node; instead, we
use the shortcuts that have been created during the cotnstruc

L In [6], we give more details on the definition of neighbourtieoln particular, we distinguish between a forward and a
backward neighbourhood. However, in this context, we wdikkgdto slightly simplify the notation and concentrate on
the concepts that are important to understand the subsesgions.

2 For each connected node péif; t), we select a uniqueanonical shortest patin such a way that each subpath of a
canonical shortest path is canonical as well. For detais;efer to [5].

3

@ entrance point to level |0
@ entrance point to level|l
@ entrance point to level 2

Fig. 1. A schematic diagram of a highway query. Only the forward geatarted from the source nodés depicted.

At this point, we can observe two interesting propertiedeftiighway query algorithm.
First, it isnotgoal-directed. In fact, the forward search ‘knows’ nothatgput the target and
the backward search ‘knows’ nothing about the source, ddothth search processes work
completely independently and spread into all directiorxo0fd, when both search scopes
meet at some point, we cannot easily abort the search—imasirio the bidirectional ver-
sion of DIIKSTRA's algorithm, where we can abort immediately after a commaaerhas
been settled from both sides. The reason for this is illtestién Fig. 2. In the upper part of

Level 2
Level 1

Level 0

Level 2
Level 1

Level 0

Fig. 2. Schematic profile of a bidirectional highway query.

the figure, the bidirectional query from a noglto a node along a pathP is represented by

a profile that shows the level transitions within the highvaggrarchy. To get a sequential
algorithm, at each iteration we have to decide whether a frodethe forward or the back-
ward queue is settled. We assume that a strategy is usedhtioatr$ the smaller element.
Thus, both search processes meet in the middle, ataddéen this happens, a path from
s tot has been found. However, we have no guarantee that it is treeshone. In fact, the
lower part of the figure contains the profile of a shorter patfrom s to ¢, which is less
symmetric than the profile d?. Note that the very flexible definition of the neighbourhoods
allows such asymmetric profiles. Whein P is settled from both sides has been reached
on () by the backwards search, budt by the forward search since a search process never
goes downwards in the hierarchy: therefore, at nodlee forward search is not continued on
the pathQ). We find the shorter patf) not until the backward search has reacheevhich
happensfter P has been found. Hence, it would be wrong to abort the seattdnwhas
been settled.

In [5], we introduced some rather complicated abort citewhich we dropped in [6]
since they did reduce the search space, but the evaluattbe ofiteria was too expensive.

2.2 Using aDistance Table

The construction of less levels of the highway hierarchytaedisage of a compledéstance
tablefor the core of the topmost level can considerably acceddtat query: whenever the
forward (backward) search enters the core of the topmost &&vsome node, « is added
to a node setl’ (7) and the search is not continued framSince all distances between
the nodes in the set and T have been precomputed and stored in a table, we can easily
determine the shortest path length by considering all nadts @, v), u € 7,@ € 7, and
summing upd(s, u) + d(u,v) + d(v, t). For details, we refer to [6].

Using the distance table can be seen as extreme case ofigaakd search: from the
nodes in the set’ , we directly ‘jump’ to the nodes in the sélt, which are close to the
target. Thus, we can say that the highway query with the nistéable optimisation works
in two phases: a strictly non-goal-directed phase till #ts § and 7 have been determined,
followed by a ‘goal-directed jump’ using the distance table

2.3 Complete Description of the Shortest Path

So far, we have dealt only with the computation of shortet g@estancesin order to deter-
mine a complete description of the shortest path, a) we labedge the gap between the
forward and backward core entrance points and b) we havepaneixthe used shortcuts to
obtain the corresponding subpaths in the original graph.

Problem a) can be solved using a simple algorithm: We stdh thie forward core en-
trance point.. As long as the backward entrance pairitas not been reached, we consider
all outgoing edgesu, w) in the topmost core and check whethé, w)+d(w, v) = d(u, v);
we pick an edgéu, w) that fulfils the equation, and we set= w. The check can be per-
formed using the distance table. It allows us to greedilgiaeine the next hop that leads to
the the backward entrance point.

Problem b) can be solved without using any extra data (Vadanfor each shortcut
(u,v), we perform a search fromto v in order to determine the path in the original graph;
this search can be accelerated by using the knowledge #nétshedge of the path enters
a component’ of bypassed nodes, the last edge leads tnd all other edges are situated
within the component’.

However, if a fast output routine is required, it is neceggarspend some additional
space to accelerate the unpacking process. We use a rafitestezated data structure to
represent unpacking information for the shortcuts in a sgficient way (Variant 2). In
particular, we do not store a sequence of node IDs that deseripath that corresponds
to a shortcut, but we store onhop indices for each edgéu, v) on the path that should
be represented, we store its index minus the index of thedadge ofu. Since in most
cases the degree of a node is very small, these hop indicdsecstored using only a few
bits. The unpacked shortcuts are stored in a recursive w@y.tlke description of a level-2
shortcut may contain several level-1 shortcuts. Accorgirige unpacking procedure works
recursively.

To obtain a further speed-up, we have a variant of the unpgadata structures (Vari-
ant 3) that caches the complete descriptions—without semus—of all shortcuts that be-
long to the topmost level, i.e., for these important shdgtbat are frequently used, we do
not have to use a recursive unpacking procedure, but we saappend the corresponding
subpath to the resulting path.

3 A* Search Using Landmarks

In this section we explain the known techniqueAfsearch [2] in combination with land-
marks. We follow the implementation presented in [4]. Int®er3.2 we introduce a new
landmark selection technique calladvancedAvoidFurthermore, we present how the se-
lection of landmarks can be accelerated using highway tuleies.

The search space of IIXKSTRA's algorithm can be visualised as a circle around the
source. The idea of goal-directed dr search is to push the search towards the target.
By adding a potentiat : IV — R to the priority of each node, the order in which nodes are
removed from the priority queue is altered. A ‘good’ potahtowers the priority of nodes
that lie on a shortest path to the target. It is easy to seedhat equivalent to UKSTRA'S
algorithm on a graph witreduced costformally w,. (u, v) = w(u,v) — 7 (u) + 7(v). Since
DIJKSTRA's algorithm works only on nonnegative edge costs, not akpibals are allowed.
We call a potentiak feasibleif w,(u,v) > 0 for all (u,v) € E. The distance from each
nodev of GG to the target is the distance fromr to ¢ in the graph with reduced edge costs
minus the potential of plus the potential of. So, if the potentiak(¢) of the target is zero,
7(v) provides dower boundfor the distance from to the target.

Bidirectional A*. At a glance, combiningl* and bidirectional search seems easy. Simply
use a feasible potential for the forward and a feasible potentialfor the backward search.
However, this does not work due to the fact that both seanchgkt work on different re-
duced costs, so that the shortest path might not have bead felien both searches meet.
This can only be guaranteedsif andr, areconsistenmeaninguw,(u,v) in G is equal to
wy, (v, u) in the reverse graph. We use the variant of an average paltémiction [13] de-
fined agp(v) = (7y(v)—mn,(v))/2 for the forward angh, (v) = (7, (v)—7s(v))/2 = —ps(v)
for the backward search. By adding(t)/2 to the forward andr;(s)/2 to the backward
search,p; andp, provide lower bounds to the target and source, respectiiie that
these potentials are feasible and consistent but provideetower bounds than the original
ones.

ALT. There exist several techniques [14, 15] how to obtain féagbtentials using the
layout of a graph. The ALT algorithm uses a small number ofesedso callettndmarks—
and the triangle inequality to compute feasible potenti@isen a setS C V' of landmarks
and distanced(L,v),d(v, L) for all nodesv € V and landmarkd. € S, the following
triangle inequations hold:

d(u,v) +d(v,L) > d(u,L) and d(L,u)+ d(u,v) > d(L,v)

Therefored(u, v) := maxyeg max{d(u, L) — d(v, L),d(L,v) — d(L,)} provides a lower
bound for the distancé(u, v). The quality of the lower bounds highly depends on the gpalit
of the selected landmarks.

Our implementation uses the tuning techniquescive landmarkspruning and the
enhanced stopping criterion. We stop the search if the summ@mum keys in the forward
and the backward queue exceed- p;(s), wherey represents the tentative shortest path
length and is therefore an upper bound for the shortest patth froms to ¢. For each
s-t query only two landmarks—one ‘before’ the source and ondifi the target—are
initially used. At certain checkpoints we decide whetheadd an additional landmark to
the active set, with a maximal amount of six landmarks. Rrgmneans that before relaxing
an arc(u, v) during the forward search we also check wheth@ru) +w(u, v) +7¢(v) < p
holds. This technique may be applied to the backward seasilyeNote that for pruning,
the potential function need not be consistent.

3.1 Landmark-Selection

A crucial point in the success of a high speedup when using <fie quality of landmarks.
Since finding good landmarks is hard, several heuristicd][8xist. We focus on the best
known techniqueavoidandmaxCover

Avoid. This heuristic tries to identify regions of the graph tha aot well covered by the
current landmark set. Therefore, a shortest-path trégis grown from a random node
The weightof each node is the difference betweeti(v,) and the lower bound(v, r)
obtained by the given landmarks. Thizeof a nodev is defined by the sum of its weight
and the size of its children .. If the subtree of ;. rooted aty contains a landmark, the size
of v is set to zero. Starting from the node with maximum siZeis traversed following the
child with highest size. The leaf obtained by this traversaldded toS. In this strategy, the
first root is picked at random. The following roots are picketh a probability proportional
to the square of the distance to its nearest landmark.

MaxCover [4]. The main disadvantage of avoid is the starting phase of thadtie. The
first root is picked at random and the following landmarks laighly dependent on the
starting landmark. MaxCover improves on this by first chngsi candidate set of landmarks
(using avoid) that is about four times larger than neede@. [@hdmarks actually used are
selected from the candidates using several attempts wittehd$earch routine. Each attempt
starts with a random initial selection.

3.2 New Selection Techniques

In the following we introduce a new heuristic calladvancedAvoido select landmarks.
Furthermore, we use the highway hierarchies to speed upeteet®n of landmarks.

AdvancedAvoid Another approach to compensate for the disadvantages af svto ex-
change the first landmarks generated by the avoid heurdtoe precisely, we generate
avoid landmarks, then in each iteratioteke the landmark& — 1)k’ + 1 to ik’ from the
setS and generaté’ new landmarks using avoid again. We repeat this procedtiraes.
The advantage of advancedAvoid towards maxCover is the atatipn time. While max-
Cover takes about five times longer than avoid, the overtwaativancedAvoid is abodt%
for k = 16, k¥’ = 6, andr = 1 on the road network of Western Europe.

7

Core Landmarks.The computation of landmarks is expensive. Calculating@uoaer land-
marks on the European network takes about 75 minutes, wnistiucting the whole high-
way hierarchy can be done in about 15 minutes. A promisingagmh is to use the highway
hierarchy to reduce the number of possible landmarks: Tvel-e core of the European
road network has six times fewer nodes than the original oidt@nd its construction takes
only about three minutes. Using the core as possible pasitar landmarks, the computa-
tion time for calculating landmarks (all heuristics) candezreased. Using only the nodes
of higher level cores reduces the time for selecting lan#syaven more. Figure 3 shows
an example of 16 advancedAvoid landmarks, generated orevieé 1 core of the European
network.

Fig. 3. 16 advancedAvoid core 1 landmarks on the Western Europeahnetwork

4 Combining Highway Hierarchiesand A* Search

Previously (see Section 2), we strictly separated the Bgdrase to the topmost core from
the access to the distance table: first, the sets of entramioess@ and / into the core of

the topmost level were determined, and afterwards the tabkeups were performed. Now
we interweave both phases: whenever a forward core entgawinéw is discovered, it is
added to/ and we immediately consider all paits, v),v € I, in order to check whether
the tentative shortest path lengtltan be improved. (An analogous procedure applies to the
discovery of a backward core entrance point.) This new aggrds advantageous since we
can use the tentative shortest path lengths an upper bound on the actual shortest path
length. In [5, 6], the highway query algorithm used a stratidmt compares the minimum
elements of both priority queues and prefers the smalleirooeler to sequentialise forward

8

and backward search. If we want to obtain good upper boungsfast, this might not
be the best choice. For example, if the source node belongsdnsely populated area
and the target to a sparsely populated area, the distarmedlie source and target to the
entrance points into the core of the topmost level will bey\different. Therefore, we now
choose a strategy that balangds| and| I |, preferring the direction that has encountered
less entrance points. In case of equality (in particulath@ébeginning whelh7| = |7| =

0), we use a simple alternating strategy.

We enhance the highway query algorithm with goal-directgohbilities—obtaining an
algorithm that we calHH* search—by replacing edge weights bgduced costsising po-
tential functionsr; and, for forward and backward search. By this means, the search is
directed towards the respective target, i.e., we are likeliind somes-¢ path very soon.
However, just using the reduced costs only changesrtiher in which the nodes are settled,
it does not reduce the search space. The ideal way to bewafitfre early encounter of the
forward and backward search would be to abort the searchomsasoans-t path has been
found. And, as a matter of fact, in case of the ALT algorithipf&ven in combination with
reach-based routing [8]—it can be shown that an immediatet &possible without losing
correctness if consistent potential functions are useel $&tion 3). In contrast, this does
not apply to the highway query algorithm since even in the-goal-directed variant of the
algorithm, we cannot abort when both search scopes haveseeBection 2).

Fortunately, there is another aspect of goal-directecchdhat can be exploited, namely
pruning finding anys-t path also means finding an upper boyndn the length of the
shortests-t path. Comparing the lower bounds with the upper bound carskd to prune
the search. In Section 3, the pruningeafgeshas already been mentioned. Alternatively, we
can prunenodes if the key of a settled node is greater than the upper bound, we do not
have to relaxu’s edges. Note that, using reduced costs, the keyisfthe distance from the
corresponding source toplus the lower bound on the distance frarto the corresponding
target.

Since we do not abort when both search scopes have met andsbewa have the
distance table, a very simple implementation of the ALT &ty is possible. First, we
do not have to use consistent potential functions. Insteadjirectly use the lower bound
to the target as potential for the forward search and, aoakly, the lower bound from
the source as potential for the backward search. Theset@dtiemctions make the search
processes approach their respective target faster thag csinsistent potential functions so
that we get good upper bounds very early. In addition, theerprdning gets very effective:
if one node is pruned, we can conclude that all nodes lefterstime priority queue will be
pruned as well since we use the same lower bound for pruniddaarthe potential that is
part of the key in the priority queue. Hence, in this case, areimmediately stop the search
in the corresponding direction.

Second, it is sufficient to select at the beginning of the gder each search direction
only one landmark that yields the best lower bound. Sincesdfa@ch space is limited to a
relatively small local area around source and target (duleet@istance table optimisation),
we do not have to pick more landmarks, in particular, we ddage to add additional land-
marks in the course of the query, which would require fluskangd rebuilding the priority
gueues. Thus, adding* search to the highway query algorithm (including the distatable
optimisation) causes only little overhead per node.

9

However, there is a considerable drawback. While the gmattkd search (which gives
good upper bounds) works very well, the pruning is not vergcsssful when we want to
computefastesipaths, i.e., when we use a travel time metric, because tledowrer bounds
are usually too weak. Figure 4 gives an example for this elasien, which occurs quite
frequently in practice. The first part of the shortest patimfr to ¢ corresponds to the first

Ug ®

@) (b)

Fig. 4. Two snapshots of the search space oftHi* search using a travel time metric. The landmarkf
the forward search fromto ¢ is explicitly marked. The landmark used by the backwarddes somewhere
below s and not included in the chosen clipping area. The searclespddack, parts of the shortest path are
represented by thick lines. In addition, motorways are liggked in red.

part of the shortest path frogto the landmark:. Thus, the reduced costs of these edges are
zero so that the forward search starts with traversing thimsnason subpath. The backward
search behaves in a similar way. Hence, we obtain a perfeetrupound very early (a).
Still, the lower bound oni(s, t) is quite bad: we have(s,u) — d(t,u) < d(s,t). Since
staying on the motorway and going directly fromto « is much faster than leaving the
motorway, driving through the countryside #t@nd continuing ta, the distancel(s, t) is
clearly underestimated. The same applies to lower bound&«@n) for nodesv close to

s. Hence, pruning the forward search does not work properiyhabthe search space still
spreads into all directions before the process terminéfesn contrast, the nodelies on
the shortest path (in the reverse graph) friota the landmark that is used by the backward
search. (Since this landmark is very far away to the soutiastnot been included in the
figure.) Therefore, the lower bound is perfect so that thé&wacd search stops immediately.
However, this is a fortunate case that occurs rather rarely.

10

4.1 Approximate Queries

We pointed out above that in most casesfimd a (near) shortest path very quickly, but it
takes much longer until wienowthat the shortest path has been found. We can adapt to this
situation by defining an abort condition that leads to an @gprate query algorithm: when
anodeu is removed from the forward priority queue and we heives)- (d(s, u)+d(u,t)) >

1 (wheree > 0 is a given parameter), then the search is not continued irfotiveard
direction. In this case, we may miss somepaths whose length is d(s, u) + d(u, t) since

the key of any remaining elementin the priority queue is> d(s,u) + d(u,t) and it is a
lower bound on the length of the shortest path fromia v to ¢. Thus, if the shortest path

is among these paths, we ha¥e,t) > d(s,u) + d(u,t) > p/(1+ ¢), i.e., we have the
guarantee that the best path that we have already found énaogth corresponds to the
upper bound:) is at most(1 + ¢) times as long as the shortest path. An analogous stopping
rule applies to the backward search.

4.2 Optimisations

Better Upper BoundsWe can use the distance table to get good upper bounds eviem.ear
So far, the distance table has only been applied to entramo¢spnto the cord/] of the
topmost level. However, in many cases we encounter nodebelang toV/] earlier during
the search process. Even the source and the target node lmglalthy to the core of the
topmost level. Still, we have to be careful since the distaable only contains the shortest
path lengths within the topmost core and a path between t@esiol’; might be longer if it

is restricted to the core of the topmost level than usingddles of the original graph. This is
the reason why we have not used such a premature jump to thestigvel before. But now,
in order to just determine upper bounds, we could use thedi@uhl table look-ups. The
effect is limited though because finding good upper bound&sveery well anyway—the
lower bounds are the crucial part. Therefore, the exactittgo does without the additional
look-ups. The approximate algorithm applies this techaituthe nodes that remain in the
priority queues after the search has been terminated dineenight improve the resdlt
For example, we would get an improvement if the goal-dir@stearch led us to the wrong
motorway entrance ramp, but the right entrance ramp hasaat keen inserted into the
priority queue.

Reducing Space ConsumptioWe can save preprocessing time and memory space if we
compute and store only the distances between the landmiadktha nodes in the core of
some fixed levek. Obviously, this has the drawback that we cannot begin vinéhgoal-
directed search immediately since we might start with ndlgigisdo not belong to the levél-
core so that the distances to and from the landmarks are oatrkimherefore, we introduce
an additionainitial query phasewhich works as a normal highway query and is stopped
when all entrance points into the core of le¥ghave been encountered. Then, we can de-
termine the distances fromto all landmarks since the distances fronvia the levelk
core entrance points to the landmarks are known. Analogoilre distances from the land-
marks tot can be computed. The same process is repeated for inteedhaogrce and target
nodes—i.e., we search forward framand backward from—in order to determine the dis-

3 In a preliminary experiment, the total error observed inraicam sample was reduced from 0.096% to 0.053%.

11

tances front to the landmarks and from the landmarks;tdNote that this second subphase
can be skipped when the first subphase has encountered dirgched edges.

The priority queues of themain query phasare filled with the entrance points that have
been found during (the first subphase of) the initial querggeh We use the distances from
the source or target node plus the lower bound to the targetoce as keys for these initial
elements. Since we never leave the levalere during the main query phase, all required
distances to and from the landmarks are known and the goedtdd search works as usual.
The final result of the algorithm is the shortest path thatdeses found during the initial or
the main query phase.

Limiting Component SizesSince the search processes from the source and target to the
level-k core entrance points are often executed twice (once fordiesttion), it is important

to bound this overhead. Therefore, we implemented a limthemumber of hops a shortcut
may represent. By this means, the sizes of the componenypagbed nodes are reduced—

in particular, the first contraction step tended to creaieedarge components of bypassed
nodes so that it took a long time to leave such a component thieesearch was started from
within it. Interestingly, this measure has also a very pesieffect on the worst case analysis

in [6]: it turned out that the worst case was caused by vegelaomponents of bypassed
nodes in some sparsely populated areas, whose sizes novwéaveonsiderably reduced

by the shortcut hops limit.

5 Experiments

5.1 Environment, | nstances, and Parameters

The experiments were done on one core of an AMD Opteron Psoc&Y0 clocked at
2.0 GHz with 4 GB main memory and>21 MB L2 cache, running SUSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler2uing optimisation
level 3. We use 32 bit integers to store edge weights and pagths.

We deal with the road network of Western EurGpghich has been made available for
scientific use by the company PTV AG. Only the largest strehgennected component is
considered. The original graph contains for each edge aHesnyd a road category, e.g.,
motorway, national road, regional road, urban street. VEgasaverage speeds to the road
categories, compute for each edge the average travel tmdeyse it as weight. In addition
to thistravel time metricwe perform experiments on a variant of the European gragh wi
a distance metricWe also perform experiments on the US road network (wit#daska
and Hawaii), which has been obtained from the TIGER/Lineg$|lL6]. Again, we consider
only the largest strongest connected component, and wendéeaboth a travel time and
a distance metric. In contrast to the PTV data, the TIGER lgrapundirected, planarised
and distinguishes only between four road categories. Alpg8 have been taken from the
DIMACS Challenge website [17]. Table 1 summarises the ptageeof the used networks.

4 14 countries: Austria, Belgium, Denmark, France, Germé#ay, Luxembourg, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and the UK

5 Note that the experiments on the TIGER graphs had been pwtbbefore the final versions, which use a finer edge
costs resolution, were available. We did not repeat therexpats since we expect hardly any change in our measure-
ment results.

12

Table 1. Properties of the used road networks.

Europe USA (Tiger)

#nodes 18010173 23947347
#directed edges 42560279 58333344
#road categories 13 4
average speeds [km/h] 10-130 40-100
neighbourhood sizé&l (time) 60 70
neighbourhood sizé&f (dist) 100, 200, 300,..

At first, we report only the times needed to compute the shbpath distance between
two nodes without outputting the actual route. These timesaserages based on 10 000
randomly chosefs, t)-pairs. In addition to providing average values, we use tethodol-
ogy from [5] in order to plot query times (and error rates)iagéthe ‘distance’ of the target
from the source, where in this context, thgkstra rankis used as a measure of distance:
for a fixed sources, the Dijkstra rank of a nodeis the rank w.r.t. the order which1ix-
STRA’s algorithm settles the nodes in. Such plots are based o® t&@@lom source nodes.
In the last paragraph of Section 5.3, we also give the timedeetto traverse the computed
shortest paths.

Since it has turned out that a better performance is obtaiiezh the preprocessing
starts with a contraction phase, we practically skip the éiemstruction step (by choosing
neighbourhood sets that contain only the node itself) sotheafirst highway network vir-
tually corresponds to the original graph. Then, the firstsegp is the contraction of level 1
to get its core. Note that in this case, distances within tre of level 1 are equal to the
distances between level-1 core nodes in the original graph.

The shortcut hops limit (introduced in Section 4) is set toTlte neighbourhood siz&
(introduced in [5, 6]) for the travel time metrics is set to &¥d 70 for the European and
the US network, respectively. For the distance metric vasiof both graphs, we use the
linearly increasing sequence 100, 200, 300as neighbourhood sizes to compute levels 2,
3, 4,... of the hierarchy.

5.2 Landmarks

PreprocessingFirst, we analyse the preprocessing of the ALT algorithmhvdifferent
selection strategies on different cores of the highwayanaty. We use 16 avoid, advance-
dAvoid and maxCover landmarks selected from the whole geayohfrom the core of levels
1-3. For advancedAvoid, we deactivate 6 landmarks onceSsetton 3.2). Table 2 gives an
overview of the preprocessing of the ALT algorithm on thedp@an network. For the US
network, see Tab. 9 in Appendix A.

We observe that the time spent for selecting landmarks dsegesignificantly when
switching to higher cores. Unfortunately, we have to coraphe distances from and to all
nodes in the original graph if we use core landmarks for th& Algorithm (on the full graph
these distances are computed during selection). In adgtie have to compute the highway
information. Nevertheless, the computation of core 1 oamkes about three minutes leading
to a decrease of total preprocessing with regard to all 8efetechniques. With regard to
preprocessing time, using avoid and advancedAvoid on thesaof level 2 or 3 does not
seem reasonable while maxCover benefits from switchingglodnicores.

13

Table 2. Overview of the preprocessing time for different selectorategies on the European network. All
figures are given in minutes of computation time. Generati@gnaxCover landmarks on the whole graph
requires more than 4 GB RAM. Therefore, these landmarks generated on an AMD Opteron Processor
252 clocked at 2.6 GHz with 16 GB main memory.

full graph core-1 core-2 core-3
metric preproc. [minfvoid adv.av. maxCgavoid adv.av. maxCgavoid. adv.av. maxCaavoid adv.av. maxCov
highway info - - -4 27 27 2.7 115 115 11.513.7 13.7 13.7
time selection 158 23.2 883 25 3.6 212 04 05 33 01 01 0.8
distances - - -4 6.3 6.3 6.3 63 6.3 6.3 6.3 6.3 6.3
highway info - - -+ 27 27 2.7 13.6 13.6 13.620.1 20.1 20.1
dist selection 135 19.2 758 21 3.0 195 04 05 24 01 0.1 1.2
distances - - -4 42 42 42 42 42 42 42 42 4.2

Another advantage when switching to higher cores is menmmmgumption. While about
2.3 GB of RAM are needed for the distances from and to all nede=n selecting 16 avoid
landmarks on the full graph, 384 MB are sufficent when usirgctire of level 1. Using the
core-2 (core-3) even further reduces the memory consumfuiié4 (17) MB. Note, that we
use 32 bit integers for keeping the distances in the main mgmo

Search SpaceTable 3 gives an overview of the average search space for taD@@ms-¢
queries on the road network of Western Europe and the US.debr &election strategy and
core we generated 10 different sets of 16 landmarks. We trép@average, minimum and
maximum of the average search space.

Table 3. Overview of the average number of nodes settled by the AL@rétgn for 1 000 random queries on
the road networks of Western Europe and the US for travektiamel—in parentheses—distances. The figures
are based on 10 different sets of landmarks.

Europe USA

landmarks

average

min

max

average

min

max

avoid
adv.av.
maxCov

93520 (253557
86340 (256511
75220 (230110

Y2720 (241609
Y2004 (218335
Y1061 (212641

03929 (264827
) 95663 (283911
) 77556 (254338

220333 (308824
210703 (302521
175359 (2821641

177826 (261037
183542 (278157
160635 (25514(

276709 (345416)
240971 (338930)
186457 (297818)

avoid-cl
adv.av.-c1l
maxCov-c

{75992 (230979

84515 (254596
82423 (252002

57895 (224111
Y1084 (226088
Y4640 (209605

) 96775 (279603
) 98963 (275778
) 78007 (257163

218313 (30920(
204800 (306364
177304 (277981

162054 (271834
187410 (263234
157530 (268944

$79510 (346570)
P47013 (367764)
190396 (288383)

avoid-c2
adv.av.-c2

maxCov-c2

89001 (259144
86611 (257963
75379 (230310

Y4980 (242489
Y5450 (218031
Y1551 (211168

) 97764 (277761
) 99107 (275780
) 80815 (250145

206188 (310958
221356 (306553
187644 (281465

170539 (265233
175679 (252837
173851 (254751

733813 (366833)
$50045 (360645)
200721 (309360)

avoid-c3
adv.av.-c3

maxCov-c§

91201 (264821
91163 (275991
72310 (239584

Y6681 (245809
B4116 (263978
$8348 (209720

) 99667 (296217
) 99779 (301018
) 76770 (259185

237615 (313674
234385 (321324
194707 (283086

193502 (270124
200155 (293913
172334 (257488

P77167 (351791)
266757 (354027)
205618 (307022)

We see that for distances the quality of landmarks is almmapendent of the chosen
level of the hierarchy. Only when switching from level 2 to 8 wbserve a mild increase
of the search space when using advancedAvoid landmarkseoyor travel times on the
European network an interesting phenomenon is that avésdogter when switching from
the whole graph to core 1 but gets worse and worse with higivetd on which landmarks
are selected. On the US network, the search space reducesswiitehing to core 2 in
combination with avoid landmarks. MaxCover is nearly inelegient of the chosen level on
the European network while on the US network a slight lossuafity can be observed with
higher levels.

14

There seem to be two counteracting effects here: On highielslef the hierarchy, we
loose information. For example, peripheral nodes that aralidates for good landmarks
are dropped. On the other hand, concentrating on highek éelgges in landmark selection
heuristics could be beneficial since these are edges negdwedrty shortest paths.

In general, maxCover outperforms avoid and advancedAegdnding the average qual-
ity of the obtained landmarks. Nevertheless, in most cdsesriinimum average search
space is nearly the same for all selection strategies wéluare, while some sets of avoid
and advancedAvoid landmarks lead to search spaces 25% lingimethe worst maxCover
landmarks. So, the maxCover routine seems to be more rdtarsatoid or advancedAvoid.
Comparing avoid and advancedAvoid we observe just a mildargment in quality. Thus,
the additional computation time of advancedAvoid is nottivane effort.

Combining the results from Tabs. 2 and 3, another strategiymsgromising: maxCover
landmarks from the core of level 2 or 3 outperform avoid laadks from the full graph and
their computation—including the highway information—dsenly additional 5 minutes
compared to avoid landmarks from the full graph. For thisosawe use such landmarks
for our further experiments.

Efficiency and Approximatiorlrable 4 indicates the efficiency of our implementation by
reporting query times in comparison to the bidirectionalast of DIJKSTRA'S algorithm.
For comparison with approximate HH queries we also pro\nde¢sults for an approximate
ALT algorithm: Stop the query if the sum of the minimum keystie forward and the
backward queue exceed (1 + <) + p(s) with ¢ = 0.1. This stopping criterion keeps the
error rate below 0%.

Table 4. Comparison of the bidirectional variant ofiixSTRA’s algorithm, the ALT algorithm, and the ap-
proximate ALT algorithm concerning search space, quergsiand error rate. The landmarks are 16 max-
Cover core-3 landmarks. The figures are based on 1 000 randeries|.

Europe USA
metric bi.Dij. ALT approx.ALT| bi.Dij. ALT approx.ALT
#settled nodes [4.68 - 10° 73563 61930r.42 - 10° 192938 182426
time query time [ms] 2707 55.2 458 3808 129.2 116.9
inaccurate querie - - 12.19 - - 8.9%
#settled nodes [5.27 - 10° 241476 219128.11 - 10° 281335 263375
dist query time [ms] 2013 169.2 15009 3437 1771 163.5
inaccurate queries - - 33.79 - - 24.8%

Analysing the speedups compared to the bidirectional maaBDIJKSTRA'S algorithm,
we observe a search space reduction for Europe (travel}tinyesfactor of aboué3.6. This
reduction leads to a speedup factor40f0 concerning query times. For the USA (travel
times), speedup concerning search space and query timeslikessthan for Europe. We
observe a factor o88.5 for search space arneh.5 for query times. The reason for this
discrepancy is the overhead for computing the potentiaigatso reported in [3, 4, 8].

For the distance metric on the European network we obsem@Lection in search space
of factor 21.8, leading to a speedup factor df.8. The corresponding figures for the US
are28.8 and19.4. Thus, the situation is vice versa to travel times. Hereedpps are better
on the US network than on the European network. The highexdsges for travel times
are due to the fact that for distances the advantage of td&stdighways instead of slow

15

streets is smaller than for travel times. Since the diffeedmetween the slowest and fastest
road category (see Tab. 1) is bigger for Europe, the ALT dlgar performs better on this
network than on the US network when using travel times.

Comparing our results with the ones from [8] we have about b@§ler search spaces
on the US network (travel times). This derives from the faett ton the US network with
travel times the quality of maxCover landmarks slightly@ases when switching to higher
cores (see Tab. 3). Nevertheless, our average query tintbsimstance are.49 (129 ms
to 322 ms) times faster, although we are using a slower computeea&an for this is a
different overhead factor.While our implementation haswerhead of factot.3, the figures
from [8] suggest an overhead &f

For the travel time metric, approximate queries perforny @@% better on Europe and
10% better on the US than exact ones. The percentage of radeaueries is 12 and 8%,
respectively. For the distance metric, the speedup forcqopiate queries is even less and the
percentage of inaccurate queries is much higher, namelya&881 24.8% for the European
and US network, respectively. These high numbers of wroreyigs are due to the fact
that for the distance metric there are more possibilitieshairt paths with similar lengths
since the difference between taking fast highways and myian slow streets fades. So,
approximation for ALT adds only a small speedup not justifyihe loss of correctness. For
a detailed analysis of the approximation error see Tab. @iFags. 11-14 in Appendix A.

Local Queries. Figure 5 gives an overview of the query times in relation t® Bijkstra
rank. For the same analysis of the approximate ALT algorjtbee Fig. 8 in Appendix A.
The results for the distance metric are also located in Agipeh (Figures 9 and 10).

Local Queries ALT (travel time metric)

1000
1000

100
|
I
100

10
10

Query Time [ms]

0.1
0.1

211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank

Fig.5. Comparison of the query times using the Dijkstra rank mettaggy on the road network of Western

Europe and the US. The landmarks are chosen from the levete3using maxCover. The results are rep-
resented as box-and-whisker plot [18]: each box spreads the lower to the upper quartile and contains
the median, the whiskers extend to the minimum and maximuoevamitting outliers, which are plotted

individually.

16

The fluctuations in query time both between different Dijasanks and with fixed Dijk-
stra rank are so big that we had to use a logarithmic scalen ypécal query times vary by
an order of magnitude for large Dijkstra ranks. The slowestrigs for most Dijkstra ranks
are two orders of magnitude slower than the median querystime

An interesting observation is also that for small ranks AgTaister on the network of the
US whereas for ranks higher tha#t, queries are faster on the European network. A plausi-
ble explanation seems to be the different geometry of thecombinents. Queries within the
(pen)insulae of Iberia, Britain, Italy, or Scandinaviaddandmarks in many directions. For
example, a user in Scotland might make the queer experigmategqueries in north-south
direction are consistently faster than queries in east-diesction (see Fig. 3). In contrast,
long distance routes often have to go through bottleneckshwdimplify search. In the US,
such effects are rare.

5.3 Highway Hierarchiesand A* Search

Default Settings.Unless otherwise stated, we use the following defaultrsgti After the
level-5 core has been determined, the construction of #@iahy is stopped. A complete
distance table is computed on the level-5 core. For distareteics, we stop at the level-6
core instead. We use 16 maxCover landmarks that have bequutednin the level-3 core.
The approximate query algorithm uses a maximum error ral®¥, i.e.. = 0.1.

Using a Distance Table and/or Landmark&s described in Section 2, using a distance table
can be seen as adding a very strong sense of goal directertadtcore of the topmost level
has been reached. If the highway query algorithm (withostbtlice table) is enhanced by the
ALT algorithm, the goal direction comes into effect muchliearStill, the most considerable
pruning effect occurs in the middle of rather long pathsselto the source and the target, the
lower bounds are too weak to prune the search. Thus, botmiggtions, distance tables and
ALT, have a quite similar effect on the search space: usitigeof both techniques, in case
of the European network with theavel time metricthe search space size is reduced from
1662 to 916 (see Tab. 5). (Note that a slightly more effeatdgriction of the search space
is obtained when all landmarks are used to compute lowerd®unstead of selecting only
one landmark for each direction, namely to 903 instead of)9Mhen we consider other
aspects like preprocessing time, memory usage, and queey We can conclude that the
distance table is somewhat superior to the landmarks ogaion. Since both techniques

Table 5. Comparison of all variants of the highway query algorithrimgsio optimisation(), a distance table
(DT), ALT, or both techniques. Values in parentheses refapproximatequeries. Note that thdisk space
includes the memory that is needed to store the originalgrap

Europe USA

metric ¢ DT ALT both ¢ DT ALT both
preproc. time [min] 16 18 19 21 22 25 26 27

time total disk space [MB] 886 1273 1326 1713 |1129 1574 1743 2188
#settled nodes 1662 916 916 686 (176)1966 1098 1027 787 (162)
query time [ms] 149 0.79 1.04 0.68(0.21) 1.58 0.89 1.05 0.73 (0.21)
preproc. time [min] 46 46 49 48 54 56 58 58

dist total disk space [MB] 894 1506 1337 1948 |1140 1721 1754 2335
#settled nodes 10284 5067 3347 2138 (177706 5477 2784 2021 (169)
query time [ms] 10.93 6.02 4.33 2.54(0.30) 9.74 6.24 3.42 2.23(0.33)

17

have a similar point of application, a combination of thehwgy query algorithm with
both optimisations gives only a comparatively small imgnovent compared to using only
one optimisation. In contrast to the exact algorithm, thpragximate variant reduces the
search space size and the query time considerably—e.@%ahd 27% in case of Europe
(relative to using only the distance table optimisation)#hjle guaranteeing a maximum
error of 10% and achieving a total error of 0.056% in our randsample of 1 000 000
(s,t)-pairs (refer to Tab. 7).

Using adistance metricALT gets more effective and beats the distance table opéimi
tion since much better lower bounds are produced: the negefiect described in Fig. 4 is
weakened. Furthermore, in this case, a combination with bptimisations is worthwhile:
the search space size and the query time are reduced to 428drot Europe (relative to
using only the distance table optimisation). While the g query algorithm enhanced
with a distance table has 7.6 times slower query times whpheajto the European graph
with the distance metric instead of using the travel timeriogthe combination with both
optimisations reduces this performance gap to a factor/ef8r even 1.4 when the approx-
imate variant is used.

Different Landmark Setsln Tab. 6, we compare different sets of landmarks. Obviqusly
increase of the number of landmarks improves the query pedoce. However, the rate
of improvement is rather moderate so that using only 16 lar@isnand thus, saving some
memory and preprocessing time seems to be a good option. Uddegygof the selected
landmarks is very similar for the two landmark selection moels that we have considered.
Since the preprocessing times are similar as well, we ptesfieg the maxCover landmarks
since they are slightly better.

Table6. Comparison of the search spaces (in terms of number ofdettides) of the highway query algorithm
using different landmark sets. For each road network (vwithttavel time metric), the first column contains
the search space size if thE" search isnot used. Values in parentheses refer to the search space §izes o
approximate queries.

Europe USA
#landmarks 0 16 24 32 0 16 24 32
core-1 avoid LglG 687 (179) 665 (161) 651 (14(1)1 098 808 (189) 762 (144) 736 (127)
core-3 maxCove 686 (176) 697 (177) 649 (140) 787 (162) 758 (134) 736 (121)

Local Queries. In Fig. 6, we compare the exact and the approxiniéite search in case
of the European network with the travel time metric. (For Ut network the results are
similar. We refer to Fig. 15 in Appendix A.) In the exact cafe,Dijkstra ranks up t@?,
we observe a continuous increase of the query times: siecdistance between source and
target grows, it takes longer till both search scopes memtgFeater Dijkstra ranks, we
observe no significant further rise of the query times. This loe explained by the distance
table that bridges the gap between the forward and backwardlsfor long-distance queries
very efficiently, no matter whether we deal with a long or aneng path.

Up to a Dijkstra rank oR!®, the approximate variant shows a very similar behaviour—
even though at a somewhat lower level. Then, the query tdmeseasereaching very small
values for very long paths (Dijkstra rank$—224). This is due to the fact that thelative
inaccuracy of the lower bounds, which is crucial for the stopdition of the approximate

18

Local Queries HH* (Europe, travel time metric)

[o2e) o
0 | o - °© 8 o
i o 8 I .+ oo s
w 2 ST
E g o °8 e B T TiI T g
2 2 o B8 8T Tiai i g fRos
£ o P TT Nr il Ly g o
g %EQEHHHHHH H
o o N 0 _
21 ﬁasg::H.EIBI:I:I; B S
L e B H F B
o | fileroelsgegcrer o THE = g |
o o

211 212 213 214 215 216 217 218 220 221 222 223 224

N
—
©

Dijkstra Rank

Fig. 6. Comparison of the query times of the exact and the approgifiit” search using the Dijkstra rank methodology.

algorithm, is less distinct for very long paths: hence, nadsthe time, the lower bounds
are sufficiently strong to stop very early. However, thedangmber and high amplitude of
outliers indicates that sometimes goal direction does ravkwvell even for approximate
queries.

Approximation Error. Figure 7 shows the actual distribution of the approximagoor for
a random sample in the European network with the travel tiragio) grouped by Dijkstra
rank. (For the European network with the distance metric thedUS network with both
metrics, see Figs. 16—18 in Appendix A.) For paths up to a matddength (Dijkstra rank
216), at least 99% of all queries in the random sample returnextanrate result. Only very
few queries approach the guaranteed maximum error rate %f Eor longer paths, still
more than 94% of the queries give the correct result, and 9@ of the queries find
paths that are at most 2% longer than the shortest path. Théhfat we get more errors
for longer paths corresponds to the running times depictdeig. 6: in the case of large
Dijkstra ranks, we usually stop the search quite early, twimicreases the likelihood of an
inaccuracy.

While the approximate variant of the ALT algorithm givesyalsmall speedup (com-
pare Fig. 5 with Fig. 8 in Appendix A) and produces a considieramount of inaccurate
results (in particular for short paths, see Figs. 11 andth®)approximatélH* algorithm
is much faster than the exact version (in particular for lpaths) and produces a compara-
tively small amount of inaccurate results. This differersaainly due to the distance table,
which allows a fast determination of upper bounds—and timusiany cases early aborts—
and provides accurate long-distance subpaths, i.e., tlgdlting that can go wrong is that
the search processes in the local area around source aet dargot find the right core
entrance points.

19

Approximation Error HH* (Europe, travel time metric)

o o
o — O
— —
o _|)
(o] (o]
o _] .
(o)) [«2)
% B up to 10% longer
2~ O up to 8% longer ~
g © B up to 6% longer °
K E up to 4% longer
9 B up to 2% longer -
@ accurate
0 _| e
(o] (o]
< L <
© | | | | | | | | °
17 18 19 20 21 22 23 24

212 13 ol oI5 QI8 HlT plE 58 R 2l o2 9B 5

Dijkstra Rank

Fig. 7. Actual distribution of the approximation error for a randsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis start948, i.e., at least 94% of all queries returned an
accurate result.

In Tab. 7, we compared the effect of different maximum eredess. We obtained the
expected result that a larger maximum error rate reduceseireh space size considerably.
Furthermore, we had a look at the actual error that occurarimamdom sample: we divided
the sum of all path lengths that were obtained by the apprataralgorithm by the sum of the
shortest path lengths. We find that the resulting total asgery small, e.g., only 0.056%
in case of the European network with the travel time metriemwkve allow a maximum
error rate of 10%. Similar to the results in Section 5.2, weenbe that the total error and
the percentage of inaccurate queries (see Figs. 16 andd &) wh higher when using the
distance metric instead of the travel time metric.

Table 7. Comparison of different maximum error ratesBy thetotal error, we give the sum of the path
lengths obtained by the approximate algorithm divided feystiim of the shortest path lengths. Note that these
values are given in percent. This table is based on 1 000 G@dna(s, t)-pairs (instead of the usual 10 000

pairs).
Europe USA
metric € [%] 0 1 2 5 10 20 0 1 2 5 10 20
time #settled nodes 685 612 523 319 177 103 784 632 516 307 162 86
total error [%)] 0 0.0002 0.0015 0.018 0.056 0.112 0 0.0013 0.0073 0.034 0.082 0.144
dist #settled nodes 2131 1302 843 333 184 142021 1101 672 277 169 134

total error [%] 0 0.0112 0.0383 0.172 0.329 0.5p6 0O 0.0108 0.0441 0.132 0.193 0.240

Complete Description of the Shortest Pat®o far, we have reported only the times needed
to compute the shortest patlistancebetween two nodes. Now, we determine a complete
description of the shortest path. In Tab. 8 we give the aalttii preprocessing time and the
additional disk space for the unpacking data structuresh&tmore, we report the additional

20

time that is needed to determine a complete descriptioneo§hiortest path and to travetse
it summing up the weights of all edges as a sanity check—asgutmat the distance query
has already been performed. That means that the total @/&nag to determine a shortest
path is the time given in Tab. 8 plus the query time given irviongs tables. We can conclude
that even Variant 3 uses comparatively little preprocesime and space. With Variant 3,
the time for outputting the path remains considerably sendiian the query time itself and
a factor 3—-5 smaller than using Variant 2. The USA graph mofibre than the European
graph since it has paths with considerably larger hop copetdaps due to a larger number
of degree two nodes in the input. Note that due to cache sfféoe time for outputting
the path using preprocessed shortcuts is likely to be ceradtly smaller than the time for
traversing the shortest path in the original graph.

Table 8. Additional preprocessing time, additional disk space amery time that is needed to determine a
complete description of the shortest path and to traversenitming up the weights of all edges—assuming
that the query to determine its lengths has already beeorpeefl. Moreover, the average number of hops—
i.e., the average path length in terms of number of nodes+éngThese figures refer to experiments on the
graphs with the travel time metric. Note that the experiméoit Variant 1 have been performed without using
a distance table for the topmost level.

preproc. space query #hopgreproc. space query #hops
[s] [MB] [ms] (avg.) [s] [MB] [ms] (avg.)

Europe F USA

Variant 1 0 0 16.70 137 0 0 40.64 4537
Variant 2 71 112 0.45 137 71 134 1.32 4537
Variant 3 75 180 0.17 137 75 200 0.27 4537

6 Discussion

We have learned a few things about landmark(ALT) that are interesting independently
of highway hierarchies. We have explained why the lower lbiguprovided by ALT are
often quite weak and why there are very high fluctuations iargyperformance. There
are also considerable differences between Western Euraptha US. In Europe, we have
larger execution times for local queries than in the US whereasfuog Fange (average case)
gueries, times aremaller Executing landmark selection on a graph where sparse aphgr
have been contracted is profitable in terms of preprocessimgeven if we do not want
highway hierarchies. Similarly, storing distances to laagks only on this contracted graph
considerably reduces the space overhead of ALT.

For highway hierarchies we have learned that they can alsgi&é#he case of travel dis-
tances. Compared to the case of travel times, space consuangpabout the same whereas
preprocessing time and query time increase by a factor aftaheee. It is to be expected
that any other cost metric that represents some comprorhisavel time, distance, fuel
consumption and tolls will have performance somewhereiwithis range. Highway hi-
erarchies can be augmented to output shortest paths in é8low the time needed for
computing the distances.

There is a complex interplay between highway hierarchiestha optimisations of dis-
tance tables and ALT. For exact queries using the travel timagic, distance tables are a

% Note that we dmot traverse the path in the original graph, but we directly sbarassembled description of the path.

21

better investment into preprocessing time and space than®@he incompatibility between
highway hierarchies and ALT is that the search cannot bepstpvhen search frontiers
meet. For approximate queries or for the distance mettithi@e techniques work together
very well yielding a speedup around four over highway hiengs alone: Highway hier-
archies save space and time for landmark preprocessirtgndestables obviate search in
higher levels and allow simpler and faster ALT search withyweffective goal direction.
ALT provides good pruning opportunities for the distancenuoend an excellent sense of
goal direction for approximate queries yielding high qtyatoutes most of the time while
never computing very bad routes.

An interesting route of future research is to consider a dgoatlon of highway hier-
archies with geometric containers or edge flags [10-12]hway hierarchies might har-
monise better with these methods than with ALT because ainl highway hierarchies
they are based on truncating search at certain edges. Ehalsoihope that their high pre-
processing costs might be reduced by exploiting the highvienarchy.

Very recently,transit node routing TNR) and related approaches [19, 20] has acceler-
ated shortest path queries by another two orders of magniRaoughly, TNR precomputes
shortest path distances &ocess pointg a transit node séf’ (e.g., the nodes at the high-
est level of the highway hierarchy). During a query betwesurfficiently distant” nodes, a
distance table fof” can be used to bridge the gap between the access points oéssna
target. However, TNR needs considerably more preproagssire than the approach de-
scribed in this paper. Furthermore, the currently beste@mgntation of TNR uses highway
hierarchies for preprocessing and local queries. It idylikeat also landmarks might turn out
to be useful in future versions of TNR. On the one hand, lanéiewgield lower bounds that
can be used fdocality filtersneeded in TNR. On the other hand, the precomputed distances
to access points could be used as landmark information gedipg up local search.

Acknowledgements

We would like to thank Timo Bingmann for work on visualisatitools, which were very
helpful.

References

1. Dijkstra, E.W.: A note on two problems in connexion witkaghs. Numerische Mathemati1959) 269-271

2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basistfa heuristic determination of minimum cost paths. |IEEE
Transactions on System Science and Cybernét{¢968) 100-107

3. Goldberg, A.V., Harrelson, C.: Computing the shorteipd™ meets graph theory. In: 16th ACM-SIAM Symposium
on Discrete Algorithms. (2005) 156-165

4. Goldberg, A.V., Werneck, R.F.: An efficient external meynshortest path algorithm. In: Workshop on Algorithm
Engineering and Experimentation. (2005) 26—40

5. Sanders, P., Schultes, D.: Highway hierarchies hastct skortest path queries. In: 13th European Symposium on
Algorithms (ESA). Volume 3669 of LNCS., Springer (2005) 5689

6. Sanders, P., Schultes, D.: Engineering highway hiei@schin: 14th European Symposium on Algorithms (ESA).
Volume 4168 of LNCS., Springer (2006) 804—-816 to appear.

7. Gutman, R.: Reach-based routing: A new approach to stigréeh algorithms optimized for road networks. In: 6th
Workshop on Algorithm Engineering and Experiments. (2020-111

8. Goldberg, A., Kaplan, H., Werneck, R.: Reach for. Efficient point-to-point shortest path algorithms. In: kkshop
on Algorithm Engineering & Experiments, Miami (2006) 12931

9. Maue, J., Sanders, P., Matijevic, D.: Goal directed gisbath queries using
Precomputed (ister Ostances. In: 5th Workshop on Experimental Algorithms (WENumber 4007 in LNCS,
Springer (2006) 316328

22

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

Wagner, D., Willhalm, T.: Geometric speed-up technigiee finding shortest paths in large sparse graphs. In: 11th
European Symposium on Algorithms. Volume 2832 of LNCS. ji®pmr (2003) 776—-787

Mohring, R.H., Schilling, H., Schiitz, B., Wagner, Wjllhalm, T.: Partitioning graphs to speed up Dijkstra’ga
rithm. In: 4th International Workshop on Efficient and Exipagntal Algorithms. (2005) 189-202

Lauther, U.: An extremely fast, exact algorithm for fingishortest paths in static networks with geographical back
ground. In: Geoinformation und Mobilitat — von der Forsogwur praktischen Anwendung. Volume 22., IfGl prints,
Institut fir Geoinformatik, Miinster (2004) 219-230

Ikeda, T., Hsu, M., Imai, H., Nishimura, S., Shimoura, Hashimoto, T., Tenmoku, K., Mitoh, K.: A fast algorithm
for finding better routes by Al search techniques. In: VahMavigation and Information Systems Conference. IEEE.
(1994)

Sedgewick, R., Vitter, J.S.: Shortest paths in Euctidgzace. Algorithmicd (1986) 31-48

Willhalm, T.: Engineering Shortest Path and Layout Aiidpns for Large Graphs. PhD thesis, Universitat Karlgruh
(TH), Fakultat fur Informatik (2005)

U.S. Census Bureau, Washington, DC: UA Census 2000 TIGE®RFiles. http://www.census.gov/geo/www/
tiger/tigerua/uagr2k.html (2002)

9th DIMACS Implementation Challenge: Shortest Patttg: www.dis.uniromal.it-challenge9/ (2006)

R Development Core Team: R: A Language and Environmertatistical Computing. http://www.r-project.org
(2004)

Muller, K.: Design and implementation of an efficienetgirchical speed-up technique for computation of exact
shortest paths in graphs. Master’s thesis, UniverstédsKare (2006) supervised by D. Delling, M. Holzer, F. Schulz
and D. Wagner.

Bast, H., Funke, S., Matijevic, D., Sanders, P., Schulle: In transit to constant time shortest-path querieoaur
networks. submitted for publication. (2006)

23

A Further Experiments

Table 9. Overview of the preprocessing for different selectiontsgees on the US network. All figures are

given in minutes of computation time. Generating 16 max€tedmarks on the whole graph requires more
than 4 GB RAM. Therefore, these landmarks were generatea éxiviD Opteron Processor 252 clocked at
2.6 GHz with 16 GB main memory.

full graph core-1 core-2 core-3
metric preproc. [minjhvoid adv.av. maxCqavoid adv.av. maxCqavoid. adv.av. maxCaavoid adv.av. maxCov
highway info - - - 34 34 3.4 149 149 149185 185 18.5
time selection 20.5 305 105 3.1 45 284 05 0.7 56 01 0.2 1.2
distances - - -4 7.1 7.1 71 71 7.1 71 7.1 7.1 7.1
highway info - - -4 3.1 3.1 31174 174 17.426.3 26.3 26.3
dist selection 183 26.4 97.2 29 4.2 282 06 0.9 58 0.2 0.2 1.5
distances - - -4 58 58 58 58 538 58 58 58 5.8

Table 10. Comparison of the exact and approximate ALT algorithm. Trelinarks are taken from the full
graph. The figures are based on 1 000 random queries on 1fediffgets of 16 landmarks.

Europe USA
#settled nodeginaccurate queriest#settled nodeginaccurate queries

metric exact appro¥. min —max exact appro¥. min —max

avoid 93520 81582 9.8% —11.9%220333 206 165 7.4% — 10.1%
time advav. | 86340 74706 9.3% —12.6%|210703 194920 7.6% — 9.6%

maxCove| 75220 6311P 10.7% — 11.7%|175359 161230 7.6% — 9.6%

avoid 253552 225618 31.5% — 38.4%(308 823 289 7011 24.8% — 29.9%
dist adv.aav. |256511 227 77930.9% — 38.0%|302 521 282 410 24.3% — 29.3%

maxCove[230 110 203 564 31.3% — 34.9%|282 162 265091 27.3% — 22.3%

Local Queries approximate ALT (travel times metric)

o o
o _| L. ©
= =
O Europe
B USA 8
o z o
O a — O
- Q i |i —l
7 z
= ']
° © i L o
— 7 ! -
= o g © |
- 0 B A I [HI I
j 2 [|
% — ﬁ 'ﬁ o I H . : X -
(o4 ! ' [! ' !
' [: | ! [, |
N o ! : Lot |+ Jl_ 1+
] e T TR L
o - - [ER o
: : . oo
[4 L <
+

I
218

Dijkstra Rank

219

Fig. 8. Comparison of the query times on the road network of Westernfie and the USA using the approx-
imate ALT algorithm. The landmarks are chosen from the &using maxCover.

24

Local Queries ALT (distance metric)

O Europe

B USA
i i i

10

Query Time [ms]
10 100 1000
| | |
)
-0
)
)
- a——D
-
-
- e
1
-
1]- o
1 - e=ono
F---- - - e
-
- Q=00
- o=
{77 - @emmmo
OO -e
N - eno
T T
100 1000

F---
F-=--=
F---
0.1

0.1
|
+ - - emwo o

Dijkstra Rank

Fig. 9. Comparison of the query times on the road network of Westerpfie and the USA using the ALT al-
gorithm. The landmarks are chosen from the core-3 using rmoeeC

Local Queries approximate ALT (distance metric)

8 8§ [8
g] i @ i
O Europe o
o B USA L 5
o L — O
—_ L —l
| |
° o 2 ' T I Lo o
E =7 [. 1'::|: R
|: I : IHI III:IIII
! [T]
Py | oo b +
R ii' IIHIHl-=:::::::*iLL -
(o4 i, :,|I'||'4_J-J-
\ | "I|I||IJ.J-
L R IR e
— H. T —
S 7 ' :"':J'J- =)
:II:J_JI_J'JI_J.
J.JI_J'J-

211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank

Fig. 10. Comparison of the query times on the road network of Westemoie and the USA using the ap-
proximate ALT algorithm. The landmarks are chosen from thre-3 using maxCover.

25

Approximation Error ALT (Europe, travel time metric)

o o
o — O
— —
up to 10% longer

i up to 8% longer - 9

S up to 6% longer

g up to 4% longer

g up to 2% longer

3] accurate

o
o _| L. ©
(o] (o]
0 _| L. W0
@ | | | | | | | | ®

| | | | | |
211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank

Fig. 11. Actual distribution of the approximation error for a randgample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis start85, i.e., at least 50% of all queries returned an
accurate result.

Approximation Error ALT (Europe, distance metric)

o o
o — O
— —
o _| L. ©
o up to 10% longer S
up to 8% longer
0,
v o up to 6% longer s
2 © up to 4% longer c3)
E up to 2% longer
o accurate
o O | L o
o ~ ~
o _|)
o o
o _| L. O
o | | | | | | | | Lo

211 212 213 214 215 216 217 218
Dijkstra Rank

Fig. 12. Actual distribution of the approximation error for a randeample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis startSQ8b, i.e., at least 50% of all queries returned an
accurate result.

26

Approximation Error ALT (USA, travel time metric)

Percentage

o o
o — O
— —
B up to 10% longer
o | O up to 8% longer |
o B up to 6% longer @
B up to 4% longer
B up to 2% longer
o _| @ accurate =)
(o) [«
0 _| . W0
¢ ©
o _| L. O©
@ | | | | | | | @

| | | | |
Jll 9l2 513 Hl4 515 516 517 518 519 520 521 522

Dijkstra Rank

Fig. 13. Actual distribution of the approximation error for a randgample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis start8Qf, i.e., at least 80% of all queries returned an
accurate result.

Approximation Error ALT (USA, distance metric)

211 212 213 214 215 216 217 218 219 220 221 222

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer

OEOoECDE

accurate

Percentage
60 65 70 75 80 85 90 95 100
60 65 70 75 80 85 90 95 100

Dijkstra Rank
Fig. 14. Actual distribution of the approximation error for a randeample, grouped by Dijkstra rank. Note

that, in order to increase readability, the y-axis start6Qf, i.e., at least 60% of all queries returned an
accurate result.

27

Local Queries HH* (USA, travel time metric)

o
Q] <
N N
o o ©°
9 o
[o2Ne} (¢} [}
— 0 - n
g < o T go o © §8 8, -
Py O exact ! - 87 @ To 8
£ B approx T ET . 8 R | o
> 3 : Eo E' S R T S R -)
] le) r 1 vy ! L [| | i
g — g 8 E E | [: : [, : . . -
> e [[L Lo . | '
° gpfet Dl a pa BB E] G
3 iﬁ.Ti:Q:H'E 1 R 3
s a - | L:—I. : I . ' !) | | | X X ﬁ
E. E. |. (B J'_ | J'_ T L J'_ + L SE J.-
o _| L, o+, L+ 4 4 L 4 L 4 L 4 o
© T T T T T T T T T T T T T T ©
211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank
Fig. 15. Comparison of the query times of the exact and the approgifiat” search.
Approximation Error HH* (Europe, distance metric)
o o
O o
— —
n _| n
(o)) [«
o _| o
(o] (o]
]
(o))
8
S 8 up to 10% longer =Y
s up to 8% longer
e S| up to 6% longer | o
o up to 4% longer o
up to 2% longer
0 accurate - 2
o _| o
™~ | | | | | | | ™~

|
o1l

|
212

|
213

|
o4

|
215

216

217

218

219

220

221

222

223

224

Dijkstra Rank
Fig. 16. Actual distribution of the approximation error for a randgample, grouped by Dijkstra rank. Note

that, in order to increase readability, the y-axis start3Qf, i.e., at least 70% of all queries returned an
accurate result.

28

Approximation Error HH* (USA, travel time metric)

Percentage

o o
S _ — O
S —
o _| .
Py [e2)
© _| . ©
S (o]
< | L <
> [«
_ B up to 10% longer L
~ O up to 8% longer L«
o ® up to 6% longer @
- E up to 4% longer ~
S B up to 2% longer - &
| @ accurate L
©o | L. ©
o [[[[[[©

| | | | | |
211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank

Fig. 17. Actual distribution of the approximation error for a randgample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis start88, i.e., at least 88% of all queries returned an
accurate result.

Approximation Error HH* (USA, distance metric)

Percentage

o o
o — O
— —
0 _| . W0
(o] (o]
o _|)
() [«
up to 10% longer
0 | up to 8% longer |
© up to 6% longer ©
up to 4% longer
o | up to 2% longer o
@ accurate ®
n _J L. WO
~ ~

Dijkstra Rank

Fig. 18. Actual distribution of the approximation error for a randeample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis start35, i.e., at least 75% of all queries returned an
accurate result.

29

