
Highway Hierarchies Star⋆

Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany,
{delling,sanders,schultes,wagner}@ira.uka.de

Abstract. We study two speedup techniques for route planning in road networks: highway hierarchies
(HH) and goal directed search using landmarks (ALT). It turns out that there are several interesting syn-
ergies. Highway hierarchies yield a way to implement landmark selection more efficiently and to store
landmark information more space efficiently than before. ALT gives queries in highway hierarchies an ex-
cellent sense of direction and allows some pruning of the search space. For computing shortest distances
and approximately shortest travel times, this combinationyields a significant speedup over HH alone. We
also explain how to compute actual shortest paths very efficiently.

1 Introduction

Computing fastest routes in a road networksG = (V, E) from a sources to a targett is
one of the showpieces of real-world applications of algorithmics. In principle, we could use
DIJKSTRA’s algorithm [1]. But for large road networks this would be far too slow. Therefore,
there is considerable interest in speedup techniques for route planning.

A classical technique that gives a speedup of around two for road networks isbidirec-
tional searchwhich simultaneously searches forward froms and backwards fromt until
the search frontiers meet. Most speedup techniques use bidirectional search as an (optional)
ingredient.

Another classical approach is goal direction viaA∗ search[2]: lower bounds define a
vertex potential that directs search towards the target. This approach was recently shown to
be very effective if lower bounds are computed using precomputed shortest path distances
to a carefully selected set of about 20Landmarknodes [3, 4] using theTriangle inequality
(ALT). Speedups up to a factor 30 over bidirectional DIJKSTRA can be observed.

A property of road networks worth exploiting is their inherent hierarchy. Commercial
systems use information on road categories to speed up search. ‘Sufficiently far away’
from source and target, only ‘important’ roads are used. This requires manual tuning of the
data and a delicate tradeoff between computation speed and suboptimality of the computed
routes. In a previous paper [5] we introduced the idea toautomaticallycomputehighway
hierarchiesthat yieldoptimal routesuncompromisingly quickly. This was the first speedup
technique that was able to preprocess the road network of a continent in realistic time and ob-
tain large speedups (several thousands) over DIJKSTRA’s algorithm. In [6] the basic method
was considerably accelerated using many small measures andusingdistance tables: shortest
path distances in the highest level of the hierarchy are precomputed. This way, it suffices to
search locally around source and target node until the shortest path distance can be found by
accessing the distance table.

A different hierarchy based method—reach based routing [7]—profits considerably from
a combination with ALT [8]. The present state of affairs is that the combined method from

⋆ Partially supported by DFG grant SA 933/1-3. and by the Future and Emerging Technologies Unit of EC (IST priority
– 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

[8] shows performance somewhat inferior to highway hierarchies with distance tables but
without goal direction. Both methods turn out to be closely related. In particular, [8] uses
methods originally developed for highway hierarchies to achieve fast preprocessing. Here,
we explore the natural question how highway hierarchies canbe combined with goal directed
search in general and with ALT in particular.

1.1 Overview and Contributions

In the following sections we first review highway hierarchies in Section 2 (Algorithm HH)
[6]. A new result presented there is a very fast algorithm forexplicitly computing the short-
est paths by precomputing unpacked versions of shortcut edges. Section 3 reviews Algo-
rithm ALT [3, 4] and introduces refined algorithms for selecting landmarks. The main in-
novation there is restricting landmark selection to nodes on higher levels of the highway
hierarchy.

The actual integration of highway hierarchies with ALT (AlgorithmHH∗) is introduced
in Section 4. This is nontrivial in several respects. For example, we need incremental access
to the distance tables for finding upper bounds and a different way to control the progress
of forward and backward search. We also have to overcome the problem that search cannot
be stopped when search frontiers meet. On the other hand, there are several simplifications
compared to ALT. Abandoning the reliance on a stopping criterion allows us to use simpler,
faster, and stronger lower bounds. Using distance tables obviates the need for dynamic land-
mark selection. Another interesting approach is to stop thesearch when a certain guaranteed
solution quality has been obtained. There are several interesting further optimisations. In
particular, we can be more space efficient than ALT by storingno landmark information on
the lowest level of the hierarchy. We describe how the missing information can be recon-
structed efficiently at query time. As a side effect, we introduce a way to limit the length
of shortcuts. This measure turns out to be of independent interest since it also improves the
basic HH algorithm.

Section 5 reports extensive experiments performed using road networks of Western Eu-
rope and the USA. Section 6 summarises the results and outlines possible future work.

1.2 More Related Work

There are several other approaches to goal directed search.Our first candidate for combi-
nation with highway hierarchies werePrecomputed Cluster Distances[9]. PCDs allow the
computation of upper and lower bounds based on precomputed distances between partitions
of the road networks. These lower bounds cannot be used forA∗ search since they can pro-
duce negative reduced edge weights. The search space can still be pruned by discontinuing
search at nodev if the lower bound fromv to t indicates that the best upper bound seen so far
cannot possibly be improved. An advantage of PCDs over landmarks is that they need less
space. We did not implement this however since PCDs are rather ineffective for search in the
lower levels of the hierarchy and since our distance table optimisation from [6] is already
very effective for pruning search at the higher levels of thehierarchy. In contrast, landmarks
can be used together withA∗ search and thus can direct the search towards the target already
in the lower levels of the hierarchy.

An important family of speedup techniques [10–12] associates information with each
edgee. This information specifies a superset of the nodes reached via e on some short-

2

est path.Geometric containers[10] require node coordinates and store a simple geometrical
object containing all the nodes reached via a shortest path.Edge flagspartition the graph into
regions. For each edgee and each regionR one bit specifies whether there is a shortest path
via e into regionR [11, 12]. Both techniques alone already contain both direction informa-
tion and hierarchy information so that very big speedups comparable to highway hierarchies
can be achieved. However, so far these methods would have forbiddingly large preprocess-
ing times for the largest available road networks. Therefore these approaches looked not so
interesting for a first attempt to combine goal directed search with highway hierarchies.

2 Highway Hierarchies

The basic idea of the highway hierarchies approach is that outside some local areas around
the source and the target node, only a subset of ‘important’ edges has to be considered
in order to be able to find the shortest path. The concept of alocal area is formalised by
the definition of a neighbourhood node set1 N(v) for each nodev. Then, the definition of
a highway networkof a graphG = (V, E) that has the property that all shortest paths
are preserved is straightforward: an edge(u, v) ∈ E belongs to the highway network iff
there are nodess, t ∈ V such that the edge(u, v) appears in the canonical shortest path2

〈s, . . . , u, v, . . . , t〉 from s to t in G with the property thatv 6∈ N(s) andu 6∈ N(t).
The size of a highway network (in terms of the number of nodes)can be considerably

reduced by a contraction procedure: for each nodev, we check abypassability criterion
that decides whetherv should bebypassed—a operation that creates shortcut edges(u, w)
representing paths of the form〈u, v, w〉. The graph that is induced by the remaining nodes
and enriched by the shortcut edges forms thecoreof the highway network. The bypassability
criterion takes into account the degree of the nodev and the number of shortcuts that would
be created ifv was bypassed. For details, we refer to [6].

A highway hierarchyof a graphG consists of several levelsG0, G1, G2, . . . , GL. Level 0
corresponds to the original graphG. Level 1 is obtained by computing thehighway network
of level 0, level 2 by computing the highway network of the core of level 1 and so on.

2.1 Highway Query

In [5], we show how the highway hierarchy of a given graph can be constructed efficiently.
After that, we can use thehighway query algorithm[6] to perform s-t queries. It is an
adaptation of the bidirectional version of DIJKSTRA’s algorithm. The search starts ats and
t in level 0. When the neighbourhood ofs or t is left, we switch to level 1 and continue the
search. Similarly, we switch to the next level if the neighbourhood of the entrance point to
the current level is left (Fig. 1). When the core of some levelhas been entered, we never
leave it again: in particular, we do not follow edges that lead to a bypassed node; instead, we
use the shortcuts that have been created during the construction.

1 In [6], we give more details on the definition of neighbourhoods. In particular, we distinguish between a forward and a
backward neighbourhood. However, in this context, we wouldlike to slightly simplify the notation and concentrate on
the concepts that are important to understand the subsequent sections.

2 For each connected node pair(s, t), we select a uniquecanonical shortest pathin such a way that each subpath of a
canonical shortest path is canonical as well. For details, we refer to [5].

3

level 0

level 1

N(v)

N(s)

entrance point to level 1

entrance point to level 0

entrance point to level 2
s

v

Fig. 1. A schematic diagram of a highway query. Only the forward search started from the source nodes is depicted.

At this point, we can observe two interesting properties of the highway query algorithm.
First, it isnotgoal-directed. In fact, the forward search ‘knows’ nothingabout the target and
the backward search ‘knows’ nothing about the source, so that both search processes work
completely independently and spread into all directions. Second, when both search scopes
meet at some point, we cannot easily abort the search—in contrast to the bidirectional ver-
sion of DIJKSTRA’s algorithm, where we can abort immediately after a common node has
been settled from both sides. The reason for this is illustrated in Fig. 2. In the upper part of

s

P

a

t

c

b

s

Q

Level 2

Level 1

Level 0

Level 2

Level 1

Level 0
t

Fig. 2. Schematic profile of a bidirectional highway query.

the figure, the bidirectional query from a nodes to a nodet along a pathP is represented by
a profile that shows the level transitions within the highwayhierarchy. To get a sequential
algorithm, at each iteration we have to decide whether a nodefrom the forward or the back-
ward queue is settled. We assume that a strategy is used that favours the smaller element.
Thus, both search processes meet in the middle, at nodea. When this happens, a path from
s to t has been found. However, we have no guarantee that it is the shortest one. In fact, the
lower part of the figure contains the profile of a shorter pathQ from s to t, which is less
symmetric than the profile ofP . Note that the very flexible definition of the neighbourhoods
allows such asymmetric profiles. Whena onP is settled from both sides,b has been reached
on Q by the backwards search, butnot by the forward search since a search process never
goes downwards in the hierarchy: therefore, at nodec, the forward search is not continued on
the pathQ. We find the shorter pathQ not until the backward search has reachedc—which
happensafter P has been found. Hence, it would be wrong to abort the search, whena has
been settled.

4

In [5], we introduced some rather complicated abort criteria, which we dropped in [6]
since they did reduce the search space, but the evaluation ofthe criteria was too expensive.

2.2 Using a Distance Table

The construction of less levels of the highway hierarchy andthe usage of a completedistance
table for the core of the topmost level can considerably accelerate the query: whenever the
forward (backward) search enters the core of the topmost level at some nodeu, u is added
to a node set

−→
I (
←−
I) and the search is not continued fromu. Since all distances between

the nodes in the sets
−→
I and

←−
I have been precomputed and stored in a table, we can easily

determine the shortest path length by considering all node pairs(u, v), u ∈
−→
I , v ∈

←−
I , and

summing upd(s, u) + d(u, v) + d(v, t). For details, we refer to [6].
Using the distance table can be seen as extreme case of goal-directed search: from the

nodes in the set
−→
I , we directly ‘jump’ to the nodes in the set

←−
I , which are close to the

target. Thus, we can say that the highway query with the distance table optimisation works
in two phases: a strictly non-goal-directed phase till the sets

−→
I and

←−
I have been determined,

followed by a ‘goal-directed jump’ using the distance table.

2.3 Complete Description of the Shortest Path

So far, we have dealt only with the computation of shortest path distances. In order to deter-
mine a complete description of the shortest path, a) we have to bridge the gap between the
forward and backward core entrance points and b) we have to expand the used shortcuts to
obtain the corresponding subpaths in the original graph.

Problem a) can be solved using a simple algorithm: We start with the forward core en-
trance pointu. As long as the backward entrance pointv has not been reached, we consider
all outgoing edges(u, w) in the topmost core and check whetherd(u, w)+d(w, v) = d(u, v);
we pick an edge(u, w) that fulfils the equation, and we setu := w. The check can be per-
formed using the distance table. It allows us to greedily determine the next hop that leads to
the the backward entrance point.

Problem b) can be solved without using any extra data (Variant 1): for each shortcut
(u, v), we perform a search fromu to v in order to determine the path in the original graph;
this search can be accelerated by using the knowledge that the first edge of the path enters
a componentC of bypassed nodes, the last edge leads tov, and all other edges are situated
within the componentC.

However, if a fast output routine is required, it is necessary to spend some additional
space to accelerate the unpacking process. We use a rather sophisticated data structure to
represent unpacking information for the shortcuts in a space-efficient way (Variant 2). In
particular, we do not store a sequence of node IDs that describe a path that corresponds
to a shortcut, but we store onlyhop indices: for each edge(u, v) on the path that should
be represented, we store its index minus the index of the firstedge ofu. Since in most
cases the degree of a node is very small, these hop indices canbe stored using only a few
bits. The unpacked shortcuts are stored in a recursive way, e.g., the description of a level-2
shortcut may contain several level-1 shortcuts. Accordingly, the unpacking procedure works
recursively.

5

To obtain a further speed-up, we have a variant of the unpacking data structures (Vari-
ant 3) that caches the complete descriptions—without recursions—of all shortcuts that be-
long to the topmost level, i.e., for these important shortcuts that are frequently used, we do
not have to use a recursive unpacking procedure, but we can just append the corresponding
subpath to the resulting path.

3 A
∗ Search Using Landmarks

In this section we explain the known technique ofA∗ search [2] in combination with land-
marks. We follow the implementation presented in [4]. In Section 3.2 we introduce a new
landmark selection technique calledadvancedAvoid. Furthermore, we present how the se-
lection of landmarks can be accelerated using highway hierarchies.

The search space of DIJKSTRA’s algorithm can be visualised as a circle around the
source. The idea of goal-directed orA∗ search is to push the search towards the target.
By adding a potentialπ : V → R to the priority of each node, the order in which nodes are
removed from the priority queue is altered. A ‘good’ potential lowers the priority of nodes
that lie on a shortest path to the target. It is easy to see thatA∗ is equivalent to DIJKSTRA’s
algorithm on a graph withreduced costs, formallywπ(u, v) = w(u, v)−π(u)+π(v). Since
DIJKSTRA’s algorithm works only on nonnegative edge costs, not all potentials are allowed.
We call a potentialπ feasibleif wπ(u, v) ≥ 0 for all (u, v) ∈ E. The distance from each
nodev of G to the targett is the distance fromv to t in the graph with reduced edge costs
minus the potential oft plus the potential ofv. So, if the potentialπ(t) of the targett is zero,
π(v) provides alower boundfor the distance fromv to the targett.

BidirectionalA∗. At a glance, combiningA∗ and bidirectional search seems easy. Simply
use a feasible potentialπf for the forward and a feasible potentialπr for the backward search.
However, this does not work due to the fact that both searchesmight work on different re-
duced costs, so that the shortest path might not have been found when both searches meet.
This can only be guaranteed ifπf andπr areconsistentmeaningwπf

(u, v) in G is equal to
wπr

(v, u) in the reverse graph. We use the variant of an average potential function [13] de-
fined aspf(v) = (πf (v)−πr(v))/2 for the forward andpr(v) = (πr(v)−πf(v))/2 = −pf (v)
for the backward search. By addingπr(t)/2 to the forward andπf(s)/2 to the backward
search,pf and pr provide lower bounds to the target and source, respectively. Note that
these potentials are feasible and consistent but provide worse lower bounds than the original
ones.

ALT . There exist several techniques [14, 15] how to obtain feasible potentials using the
layout of a graph. The ALT algorithm uses a small number of nodes—so calledlandmarks—
and the triangle inequality to compute feasible potentials. Given a setS ⊆ V of landmarks
and distancesd(L, v), d(v, L) for all nodesv ∈ V and landmarksL ∈ S, the following
triangle inequations hold:

d(u, v) + d(v, L) ≥ d(u, L) and d(L, u) + d(u, v) ≥ d(L, v)

Therefore,d(u, v) := maxL∈S max{d(u, L)− d(v, L), d(L, v)− d(L, u)} provides a lower
bound for the distanced(u, v). The quality of the lower bounds highly depends on the quality
of the selected landmarks.

6

Our implementation uses the tuning techniques ofactive landmarks, pruning and the
enhanced stopping criterion. We stop the search if the sum ofminimum keys in the forward
and the backward queue exceedµ + pf (s), whereµ represents the tentative shortest path
length and is therefore an upper bound for the shortest path length froms to t. For each
s-t query only two landmarks—one ‘before’ the source and one ‘behind’ the target—are
initially used. At certain checkpoints we decide whether toadd an additional landmark to
the active set, with a maximal amount of six landmarks. Pruning means that before relaxing
an arc(u, v) during the forward search we also check whetherd(s, u)+w(u, v)+πf(v) < µ
holds. This technique may be applied to the backward search easily. Note that for pruning,
the potential function need not be consistent.

3.1 Landmark-Selection

A crucial point in the success of a high speedup when using ALTis the quality of landmarks.
Since finding good landmarks is hard, several heuristics [3,4] exist. We focus on the best
known techniquesavoidandmaxCover.

Avoid. This heuristic tries to identify regions of the graph that are not well covered by the
current landmark setS. Therefore, a shortest-path treeTr is grown from a random noder.
The weight of each nodev is the difference betweend(v, r) and the lower boundd(v, r)
obtained by the given landmarks. Thesizeof a nodev is defined by the sum of its weight
and the size of its children inTr. If the subtree ofTr rooted atv contains a landmark, the size
of v is set to zero. Starting from the node with maximum size,Tr is traversed following the
child with highest size. The leaf obtained by this traversalis added toS. In this strategy, the
first root is picked at random. The following roots are pickedwith a probability proportional
to the square of the distance to its nearest landmark.

MaxCover [4]. The main disadvantage of avoid is the starting phase of the heuristic. The
first root is picked at random and the following landmarks arehighly dependent on the
starting landmark. MaxCover improves on this by first choosing a candidate set of landmarks
(using avoid) that is about four times larger than needed. The landmarks actually used are
selected from the candidates using several attempts with a local search routine. Each attempt
starts with a random initial selection.

3.2 New Selection Techniques

In the following we introduce a new heuristic calledadvancedAvoidto select landmarks.
Furthermore, we use the highway hierarchies to speed up the selection of landmarks.

AdvancedAvoid.Another approach to compensate for the disadvantages of avoid is to ex-
change the first landmarks generated by the avoid heuristic.More precisely, we generatek
avoid landmarks, then in each iterationi take the landmarks(i − 1)k′ + 1 to ik′ from the
setS and generatek′ new landmarks using avoid again. We repeat this procedurer times.
The advantage of advancedAvoid towards maxCover is the computation time. While max-
Cover takes about five times longer than avoid, the overhead for advancedAvoid is about45%
for k = 16, k′ = 6, andr = 1 on the road network of Western Europe.

7

Core Landmarks.The computation of landmarks is expensive. Calculating maxCover land-
marks on the European network takes about 75 minutes, while constructing the whole high-
way hierarchy can be done in about 15 minutes. A promising approach is to use the highway
hierarchy to reduce the number of possible landmarks: The level-1 core of the European
road network has six times fewer nodes than the original network and its construction takes
only about three minutes. Using the core as possible positions for landmarks, the computa-
tion time for calculating landmarks (all heuristics) can bedecreased. Using only the nodes
of higher level cores reduces the time for selecting landmarks even more. Figure 3 shows
an example of 16 advancedAvoid landmarks, generated on the level-1 core of the European
network.

Fig. 3. 16 advancedAvoid core 1 landmarks on the Western European road network

4 Combining Highway Hierarchies and A
∗ Search

Previously (see Section 2), we strictly separated the search phase to the topmost core from
the access to the distance table: first, the sets of entrance points

−→
I and

←−
I into the core of

the topmost level were determined, and afterwards the tablelook-ups were performed. Now
we interweave both phases: whenever a forward core entrancepoint u is discovered, it is
added to

−→
I and we immediately consider all pairs(u, v), v ∈

←−
I , in order to check whether

the tentative shortest path lengthµ can be improved. (An analogous procedure applies to the
discovery of a backward core entrance point.) This new approach is advantageous since we
can use the tentative shortest path lengthµ as an upper bound on the actual shortest path
length. In [5, 6], the highway query algorithm used a strategy that compares the minimum
elements of both priority queues and prefers the smaller onein order to sequentialise forward

8

and backward search. If we want to obtain good upper bounds very fast, this might not
be the best choice. For example, if the source node belongs toa densely populated area
and the target to a sparsely populated area, the distances from the source and target to the
entrance points into the core of the topmost level will be very different. Therefore, we now
choose a strategy that balances|

−→
I | and|

←−
I |, preferring the direction that has encountered

less entrance points. In case of equality (in particular, inthe beginning when|
−→
I | = |

←−
I | =

0), we use a simple alternating strategy.

We enhance the highway query algorithm with goal-directed capabilities—obtaining an
algorithm that we callHH∗ search—by replacing edge weights byreduced costsusing po-
tential functionsπf andπr for forward and backward search. By this means, the search is
directed towards the respective target, i.e., we are likelyto find somes-t path very soon.
However, just using the reduced costs only changes theorder in which the nodes are settled,
it does not reduce the search space. The ideal way to benefit from the early encounter of the
forward and backward search would be to abort the search as soon as ans-t path has been
found. And, as a matter of fact, in case of the ALT algorithm [3]—even in combination with
reach-based routing [8]—it can be shown that an immediate abort is possible without losing
correctness if consistent potential functions are used (see Section 3). In contrast, this does
not apply to the highway query algorithm since even in the non-goal-directed variant of the
algorithm, we cannot abort when both search scopes have met (see Section 2).

Fortunately, there is another aspect of goal-directed search that can be exploited, namely
pruning: finding anys-t path also means finding an upper boundµ on the length of the
shortests-t path. Comparing the lower bounds with the upper bound can be used to prune
the search. In Section 3, the pruning ofedgeshas already been mentioned. Alternatively, we
can prunenodes: if the key of a settled nodeu is greater than the upper bound, we do not
have to relaxu’s edges. Note that, using reduced costs, the key ofu is the distance from the
corresponding source tou plus the lower bound on the distance fromu to the corresponding
target.

Since we do not abort when both search scopes have met and because we have the
distance table, a very simple implementation of the ALT algorithm is possible. First, we
do not have to use consistent potential functions. Instead,we directly use the lower bound
to the target as potential for the forward search and, analogously, the lower bound from
the source as potential for the backward search. These potential functions make the search
processes approach their respective target faster than using consistent potential functions so
that we get good upper bounds very early. In addition, the node pruning gets very effective:
if one node is pruned, we can conclude that all nodes left in the same priority queue will be
pruned as well since we use the same lower bound for pruning and for the potential that is
part of the key in the priority queue. Hence, in this case, we can immediately stop the search
in the corresponding direction.

Second, it is sufficient to select at the beginning of the query for each search direction
only one landmark that yields the best lower bound. Since thesearch space is limited to a
relatively small local area around source and target (due tothe distance table optimisation),
we do not have to pick more landmarks, in particular, we do nothave to add additional land-
marks in the course of the query, which would require flushingand rebuilding the priority
queues. Thus, addingA∗ search to the highway query algorithm (including the distance table
optimisation) causes only little overhead per node.

9

However, there is a considerable drawback. While the goal-directed search (which gives
good upper bounds) works very well, the pruning is not very successful when we want to
computefastestpaths, i.e., when we use a travel time metric, because then the lower bounds
are usually too weak. Figure 4 gives an example for this observation, which occurs quite
frequently in practice. The first part of the shortest path from s to t corresponds to the first

(a) (b)

Fig. 4. Two snapshots of the search space of anHH∗ search using a travel time metric. The landmarku of
the forward search froms to t is explicitly marked. The landmark used by the backward search is somewhere
belows and not included in the chosen clipping area. The search space is black, parts of the shortest path are
represented by thick lines. In addition, motorways are highlighted in red.

part of the shortest path froms to the landmarku. Thus, the reduced costs of these edges are
zero so that the forward search starts with traversing this common subpath. The backward
search behaves in a similar way. Hence, we obtain a perfect upper bound very early (a).
Still, the lower bound ond(s, t) is quite bad: we haved(s, u) − d(t, u) ≤ d(s, t). Since
staying on the motorway and going directly froms to u is much faster than leaving the
motorway, driving through the countryside tot and continuing tou, the distanced(s, t) is
clearly underestimated. The same applies to lower bounds ond(v, t) for nodesv close to
s. Hence, pruning the forward search does not work properly sothat the search space still
spreads into all directions before the process terminates (b). In contrast, the nodes lies on
the shortest path (in the reverse graph) fromt to the landmark that is used by the backward
search. (Since this landmark is very far away to the south, ithas not been included in the
figure.) Therefore, the lower bound is perfect so that the backward search stops immediately.
However, this is a fortunate case that occurs rather rarely.

10

4.1 Approximate Queries

We pointed out above that in most cases wefind a (near) shortest path very quickly, but it
takes much longer until weknowthat the shortest path has been found. We can adapt to this
situation by defining an abort condition that leads to an approximate query algorithm: when
a nodeu is removed from the forward priority queue and we have(1+ε)·(d(s, u)+d(u, t)) >
µ (whereε ≥ 0 is a given parameter), then the search is not continued in theforward
direction. In this case, we may miss somes-t-paths whose length is≥ d(s, u)+d(u, t) since
the key of any remaining elementv in the priority queue is≥ d(s, u) + d(u, t) and it is a
lower bound on the length of the shortest path froms via v to t. Thus, if the shortest path
is among these paths, we haved(s, t) ≥ d(s, u) + d(u, t) > µ/(1 + ε), i.e., we have the
guarantee that the best path that we have already found (whose length corresponds to the
upper boundµ) is at most(1 + ε) times as long as the shortest path. An analogous stopping
rule applies to the backward search.

4.2 Optimisations

Better Upper Bounds.We can use the distance table to get good upper bounds even earlier.
So far, the distance table has only been applied to entrance points into the coreV ′

L of the
topmost level. However, in many cases we encounter nodes that belong toV ′

L earlier during
the search process. Even the source and the target node couldbelong to the core of the
topmost level. Still, we have to be careful since the distance table only contains the shortest
path lengths within the topmost core and a path between two nodes inV ′

L might be longer if it
is restricted to the core of the topmost level than using all edges of the original graph. This is
the reason why we have not used such a premature jump to the highest level before. But now,
in order to just determine upper bounds, we could use these additional table look-ups. The
effect is limited though because finding good upper bounds works very well anyway—the
lower bounds are the crucial part. Therefore, the exact algorithm does without the additional
look-ups. The approximate algorithm applies this technique to the nodes that remain in the
priority queues after the search has been terminated since this might improve the result3.
For example, we would get an improvement if the goal-directed search led us to the wrong
motorway entrance ramp, but the right entrance ramp has at least been inserted into the
priority queue.

Reducing Space Consumption.We can save preprocessing time and memory space if we
compute and store only the distances between the landmarks and the nodes in the core of
some fixed levelk. Obviously, this has the drawback that we cannot begin with the goal-
directed search immediately since we might start with nodesthat do not belong to the level-k
core so that the distances to and from the landmarks are not known. Therefore, we introduce
an additionalinitial query phase, which works as a normal highway query and is stopped
when all entrance points into the core of levelk have been encountered. Then, we can de-
termine the distances froms to all landmarks since the distances froms via the level-k
core entrance points to the landmarks are known. Analogously, the distances from the land-
marks tot can be computed. The same process is repeated for interchanged source and target
nodes—i.e., we search forward fromt and backward froms—in order to determine the dis-

3 In a preliminary experiment, the total error observed in a random sample was reduced from 0.096% to 0.053%.

11

tances fromt to the landmarks and from the landmarks tos. Note that this second subphase
can be skipped when the first subphase has encountered only bidirected edges.

The priority queues of themain query phaseare filled with the entrance points that have
been found during (the first subphase of) the initial query phase. We use the distances from
the source or target node plus the lower bound to the target orsource as keys for these initial
elements. Since we never leave the level-k core during the main query phase, all required
distances to and from the landmarks are known and the goal-directed search works as usual.
The final result of the algorithm is the shortest path that hasbeen found during the initial or
the main query phase.

Limiting Component Sizes.Since the search processes from the source and target to the
level-k core entrance points are often executed twice (once for eachdirection), it is important
to bound this overhead. Therefore, we implemented a limit onthe number of hops a shortcut
may represent. By this means, the sizes of the components of bypassed nodes are reduced—
in particular, the first contraction step tended to create quite large components of bypassed
nodes so that it took a long time to leave such a component whenthe search was started from
within it. Interestingly, this measure has also a very positive effect on the worst case analysis
in [6]: it turned out that the worst case was caused by very large components of bypassed
nodes in some sparsely populated areas, whose sizes now havebeen considerably reduced
by the shortcut hops limit.

Rearranging Nodes.Similar to [16], after the construction has been completed,we rearrange
the nodes by core level, which improves locality for the search in higher levels and, thus,
reduces the number of cache misses.

5 Experiments

5.1 Environment, Instances, and Parameters

The experiments were done on one core of a single AMD Opteron Processor 270 clocked at
2.0 GHz with 4 GB main memory and 2× 1 MB L2 cache, running SuSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler 4.0.2 using optimisation
level 3. We use 32 bit integers to store edge weights and path lengths. Benchmark results
can be found in Tab. 9 in Appendix A.

We deal with the road network of Western Europe4, which has been made available for
scientific use by the company PTV AG. Only the largest strongest connected component is
considered. The original graph contains for each edge a length and a road category, e.g.,
motorway, national road, regional road, urban street. We assign average speeds to the road
categories, compute for each edge the average travel time, and use it as weight. In addition
to thistravel time metric, we perform experiments on variants of the European graph with a
distance metricand theunit metric. We also perform experiments on the US road network
(without Alaska and Hawaii), which has been obtained from the TIGER/Line Files [17].
Again, we consider only the largest strongest connected component. In contrast to the PTV
data, the TIGER graph is undirected, planarised and distinguishes only between four road

4 14 countries: Austria, Belgium, Denmark, France, Germany,Italy, Luxembourg, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and the UK

12

Table 1. Properties of the used road networks.

Europe USA (Tiger)
#nodes 18 010 173 23 947 347
#directed edges 42 560 279 58 333 344
#road categories 13 4
average speeds [km/h] 10–130 40–100
neighbourhood sizeH (time) 60 70
neighbourhood sizeH (dist) 100, 200, 300,. . .
neighbourhood sizeH (unit) 80, 100, 120,. . .

categories. All graphs5 have been taken from the DIMACS Challenge website [18]. Table 1
summarises the properties of the used networks.

At first, we report only the times needed to compute the shortest path distance between
two nodes without outputting the actual route. These times are averages based on 10 000
randomly chosen(s, t)-pairs. In addition to providing average values, we use the methodol-
ogy from [5] in order to plot query times (and error rates) against the ‘distance’ of the target
from the source, where in this context, theDijkstra rank is used as a measure of distance:
for a fixed sources, the Dijkstra rank of a nodet is the rank w.r.t. the order which DIJK-
STRA’s algorithm settles the nodes in. Such plots are based on 1 000 random source nodes.
In the last paragraph of Section 5.3, we also give the times needed to traverse the computed
shortest paths.

Since it has turned out that a better performance is obtainedwhen the preprocessing
starts with a contraction phase, we practically skip the first construction step (by choosing
neighbourhood sets that contain only the node itself) so that the first highway network vir-
tually corresponds to the original graph. Then, the first real step is the contraction of level 1
to get its core. Note that in this case, distances within the core of level 1 are equal to the
distances between level-1 core nodes in the original graph.

The shortcut hops limit (introduced in Section 4) is set to 10. The neighbourhood sizeH
(introduced in [5, 6]) for the travel time metrics is set to 60and 70 for the European and
the US network, respectively. For the distance metric versions of both graphs, we use the
linearly increasing sequence 100, 200, 300,. . . as neighbourhood sizes to compute levels 2,
3, 4,. . . of the hierarchy.

5.2 Landmarks

PreprocessingFirst, we analyse the preprocessing of the ALT algorithm with different
selection strategies on different cores of the highway hierarchy. We use 16 avoid, advance-
dAvoid and maxCover landmarks selected from the whole graphand from the core of levels
1–3. For advancedAvoid, we deactivate 6 landmarks once (seeSection 3.2). Table 2 gives an
overview of the preprocessing of the ALT algorithm on the European network. For the US
network, see Tab. 10 in Appendix A.

We observe that the time spent for selecting landmarks decreases significantly when
switching to higher cores. Unfortunately, we have to compute the distances from and to all
nodes in the original graph if we use core landmarks for the ALT algorithm (on the full graph

5 Note that the experiments on the full TIGER graphs had been performed before the final versions, which use a finer
edge costs resolution, were available. We did not repeat theexperiments since we expect hardly any change in our
measurement results.

13

Table 2. Overview of the preprocessing time for different selectionstrategies on the European network. All
figures are given in minutes of computation time. Generating16 maxCover landmarks on the whole graph
requires more than 4 GB RAM. Therefore, these landmarks weregenerated on an AMD Opteron Processor
252 clocked at 2.6 GHz with 16 GB main memory.

full graph core-1 core-2 core-3
metric preproc. [min]avoid adv.av. maxCovavoid adv.av. maxCovavoid. adv.av. maxCovavoid adv.av. maxCov

highway info – – – 2.7 2.7 2.7 11.5 11.5 11.5 13.7 13.7 13.7
time selection 15.8 23.2 88.3 2.5 3.6 21.2 0.4 0.5 3.3 0.1 0.1 0.8

distances – – – 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3
highway info – – – 2.7 2.7 2.7 13.6 13.6 13.6 20.1 20.1 20.1

dist selection 13.5 19.2 75.3 2.1 3.0 19.5 0.4 0.5 2.4 0.1 0.1 1.2
distances – – – 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2

these distances are computed during selection). In addition, we have to compute the highway
information. Nevertheless, the computation of core 1 only takes about three minutes leading
to a decrease of total preprocessing with regard to all selection techniques. With regard to
preprocessing time, using avoid and advancedAvoid on the cores of level 2 or 3 does not
seem reasonable while maxCover benefits from switching to higher cores.

Another advantage when switching to higher cores is memory consumption. While about
2.3 GB of RAM are needed for the distances from and to all nodeswhen selecting 16 avoid
landmarks on the full graph, 384 MB are sufficent when using the core of level 1. Using the
core-2 (core-3) even further reduces the memory consumption to 64 (17) MB. Note, that we
use 32 bit integers for keeping the distances in the main memory.

Search Space.Table 3 gives an overview of the average search space for 1 000randoms-t
queries on the road network of Western Europe and the US. For each selection strategy and
core we generated 10 different sets of 16 landmarks. We report the average, minimum and
maximum of the average search space.

We see that for distances the quality of landmarks is almost independent of the chosen
level of the hierarchy. Only when switching from level 2 to 3 we observe a mild increase
of the search space when using advancedAvoid landmarks. However, for travel times on the
European network an interesting phenomenon is that avoid gets better when switching from
the whole graph to core 1 but gets worse and worse with higher levels on which landmarks

Table 3. Overview of the average number of nodes settled by the ALT algorithm for1 000 random queries on
the road networks of Western Europe and the US for travel times and—in parentheses—distances. The figures
are based on 10 different sets of landmarks.

Europe USA
landmarks average min max average min max
avoid 93520 (253552)72720 (241609)103929 (264822)220333 (308823)177826 (261037)276709 (345416)
adv.av. 86340 (256511)72004 (218335) 95663 (283911)210703 (302521)183542 (278157)240971 (338930)
maxCov 75220 (230110)71061 (212641) 77556 (254339)175359 (282162)160635 (255140)186457 (297818)
avoid-c1 84515 (254596)67895 (224111) 96775 (279603)218313 (309200)162054 (271835)279510 (346570)
adv.av.-c1 82423 (252002)71084 (226088) 98963 (275779)204800 (306364)187410 (263238)247013 (367764)
maxCov-c1 75992 (230979)74640 (209605) 78007 (257163)177304 (277981)157530 (268946)190396 (288383)
avoid-c2 89001 (259145)74980 (242489) 97764 (277761)206188 (310958)170539 (265233)233813 (366833)
adv.av.-c2 86611 (257963)75450 (218037) 99107 (275780)221356 (306553)175679 (252837)250045 (360645)
maxCov-c2 75379 (230310)71551 (211168) 80815 (250145)187644 (281465)173851 (254751)200721 (309360)
avoid-c3 91201 (264821)76681 (245809) 99667 (296217)237615 (313672)193502 (270129)277167 (351791)
adv.av.-c3 91163 (275991)84116 (263978) 99779 (301018)234385 (321328)200155 (293913)266757 (354027)
maxCov-c3 72310 (239584)68348 (209720) 76770 (259185)194707 (283086)172334 (257488)205618 (307022)

14

are selected. On the US network, the search space reduces when switching to core 2 in
combination with avoid landmarks. MaxCover is nearly independent of the chosen level on
the European network while on the US network a slight loss of quality can be observed with
higher levels.

There seem to be two counteracting effects here: On higher levels of the hierarchy, we
loose information. For example, peripheral nodes that are candidates for good landmarks
are dropped. On the other hand, concentrating on higher level edges in landmark selection
heuristics could be beneficial since these are edges needed by many shortest paths.

In general, maxCover outperforms avoid and advancedAvoid regarding the average qual-
ity of the obtained landmarks. Nevertheless, in most cases the minimum average search
space is nearly the same for all selection strategies withina core, while some sets of avoid
and advancedAvoid landmarks lead to search spaces 25% higher than the worst maxCover
landmarks. So, the maxCover routine seems to be more robust than avoid or advancedAvoid.
Comparing avoid and advancedAvoid we observe just a mild improvement in quality. Thus,
the additional computation time of advancedAvoid is not worth the effort.

Combining the results from Tabs. 2 and 3, another strategy seems promising: maxCover
landmarks from the core of level 2 or 3 outperform avoid landmarks from the full graph and
their computation—including the highway information—needs only additional 5 minutes
compared to avoid landmarks from the full graph. For this reason, we use such landmarks
for our further experiments.

Efficiency and ApproximationTable 4 indicates the efficiency of our implementation by
reporting query times in comparison to the bidirectional variant of DIJKSTRA’s algorithm.
For comparison with approximate HH queries we also provide the results for an approximate
ALT algorithm: Stop the query if the sum of the minimum keys inthe forward and the
backward queue exceedµ/(1 + ε) + pf (s) with ε = 0.1. This stopping criterion keeps the
error rate below10%.

Analysing the speedups compared to the bidirectional variant of DIJKSTRA’s algorithm,
we observe a search space reduction for Europe (travel times) by a factor of about63.6. This
reduction leads to a speedup factor of49.0 concerning query times. For the USA (travel
times), speedup concerning search space and query times is smaller than for Europe. We
observe a factor of38.5 for search space and29.5 for query times. The reason for this
discrepancy is the overhead for computing the potential andis also reported in [3, 4, 8].

For the distance metric on the European network we observe a reduction in search space
of factor 21.8, leading to a speedup factor of11.8. The corresponding figures for the US
are28.8 and19.4. Thus, the situation is vice versa to travel times. Here, speedups are better

Table 4. Comparison of the bidirectional variant of DIJKSTRA’s algorithm, the ALT algorithm, and the ap-
proximate ALT algorithm concerning search space, query times and error rate. The landmarks are 16 max-
Cover core-3 landmarks. The figures are based on 1 000 random queries.

Europe USA
metric bi.Dij. ALT approx.ALT bi.Dij. ALT approx.ALT

#settled nodes 4.68 · 106 73 563 61 9397.42 · 106 192 938 182 426
time query time [ms] 2 707 55.2 45.8 3 808 129.2 116.9

inaccurate queries – – 12.1% – – 8.9%
#settled nodes 5.27 · 106 241 476 219 1248.11 · 106 281 335 263 375

dist query time [ms] 2 013 169.2 150.9 3 437 177.1 163.5
inaccurate queries – – 33.7% – – 24.8%

15

on the US network than on the European network. The higher speedups for travel times
are due to the fact that for distances the advantage of takingfast highways instead of slow
streets is smaller than for travel times. Since the difference between the slowest and fastest
road category (see Tab. 1) is bigger for Europe, the ALT algorithm performs better on this
network than on the US network when using travel times.

Comparing our results with the ones from [8] we have about 10%higher search spaces
on the US network (travel times). This derives from the fact that on the US network with
travel times the quality of maxCover landmarks slightly decreases when switching to higher
cores (see Tab. 3). Nevertheless, our average query times inthis instance are2.49 (129 ms
to 322 ms) times faster, although we are using a slower computer. A reason for this is a
different overhead factor.While our implementation has anoverhead of factor1.3, the figures
from [8] suggest an overhead of2.

For the travel time metric, approximate queries perform only 20% better on Europe and
10% better on the US than exact ones. The percentage of inaccurate queries is 12 and 8%,
respectively. For the distance metric, the speedup for approximate queries is even less and the
percentage of inaccurate queries is much higher, namely 33.7 and 24.8% for the European
and US network, respectively. These high numbers of wrong queries are due to the fact
that for the distance metric there are more possibilities ofshort paths with similar lengths
since the difference between taking fast highways and driving on slow streets fades. So,
approximation for ALT adds only a small speedup not justifying the loss of correctness. For
a detailed analysis of the approximation error see Tab. 11 and Figs. 11–14 in Appendix A.

Local Queries. Figure 5 gives an overview of the query times in relation to the Dijkstra
rank. For the same analysis of the approximate ALT algorithm, see Fig. 8 in Appendix A.
The results for the distance metric are also located in Appendix A (Figures 9 and 10).

Local Queries ALT (travel time metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

0.
1

1
10

10
0

10
00

Europe
USA

Fig. 5. Comparison of the query times using the Dijkstra rank methodology on the road networks of Europe
and the US. The landmarks are chosen from the level-3 core using maxCover. The results are represented as
box-and-whisker plot [19]: each box spreads from the lower to the upper quartile and contains the median, the
whiskers extend to the minimum and maximum value omitting outliers, which are plotted individually.

16

The fluctuations in query time both between different Dijkstra ranks and with fixed Dijk-
stra rank are so big that we had to use a logarithmic scale. Even typical query times vary by
an order of magnitude for large Dijkstra ranks. The slowest queries for most Dijkstra ranks
are two orders of magnitude slower than the median query times.

An interesting observation is also that for small ranks ALT is faster on the network of the
US whereas for ranks higher than221, queries are faster on the European network. A plausi-
ble explanation seems to be the different geometry of the twocontinents. Queries within the
(pen)insulae of Iberia, Britain, Italy, or Scandinavia lack landmarks in many directions. For
example, a user in Scotland might make the queer experience,that queries in north-south
direction are consistently faster than queries in east-west direction (see Fig. 3). In contrast,
long distance routes often have to go through bottlenecks which simplify search. In the US,
such effects are rare.

5.3 Highway Hierarchies and A
∗ Search

Default Settings.Unless otherwise stated, we use the following default settings. After the
level-5 core has been determined, the construction of the hierarchy is stopped. A complete
distance table is computed on the level-5 core. For distancemetrics, we stop at the level-6
core instead. We use 16 maxCover landmarks that have been computed in the level-3 core.
The approximate query algorithm uses a maximum error rate of10%, i.e.,ε = 0.1.

Using a Distance Table and/or Landmarks.As described in Section 2, using a distance table
can be seen as adding a very strong sense of goal direction after the core of the topmost level
has been reached. If the highway query algorithm (without distance table) is enhanced by the
ALT algorithm, the goal direction comes into effect much earlier. Still, the most considerable
pruning effect occurs in the middle of rather long paths: close to the source and the target,
the lower bounds are too weak to prune the search. Thus, both optimisations, distance tables
and ALT, have a quite similar effect on the search space: using either of both techniques, in
case of the European network with thetravel time metric, the search space size is reduced
from 1 662 to 916 (see Tab. 5). (Note that a slightly more effective reduction of the search
space is obtained when all landmarks are used to compute lower bounds instead of selecting

Table 5. Comparison of all variants of the highway query algorithm using no optimisation (∅), a distance table
(DT), ALT, or both techniques. Values in parentheses refer to approximatequeries. Note that thedisk space
includes the memory that is needed to store the original graph.

Europe USA
metric ∅ DT ALT both ∅ DT ALT both

time

preproc. time [min] 17 19 20 22 23 26 27 28
total disk space [MB] 886 1 273 1 326 1 714 1 129 1 574 1 743 2 188
#settled nodes 1 662 916 916 686 (176)1 966 1 098 1 027 787 (162)
query time [ms] 1.16 0.65 0.80 0.55 (0.18) 1.18 0.73 0.80 0.60 (0.17)

dist

preproc. time [min] 47 47 50 49 55 57 59 59
total disk space [MB] 894 1 506 1 337 1 948 1 140 1 721 1 754 2 335
#settled nodes 10 284 5 067 3 347 2 138 (177)9 706 5 477 2 784 2 021 (169)
query time [ms] 8.21 4.89 3.16 1.95 (0.25) 7.10 4.95 2.52 1.74 (0.27)

unit

preproc. time [min] 24 27 29 32
total disk space [MB] 925 1 368 1 981 2 542
#settled nodes 1 714 1 249 (709) 1 665 1 072 (187)
query time [ms] 1.18 0.99 (0.60) 1.29 0.89 (0.22)

17

only one landmark for each direction, namely to 903 instead of 916.) When we consider
other aspects like preprocessing time, memory usage, and query time, we can conclude that
the distance table is somewhat superior to the landmarks optimisation. Since both techniques
have a similar point of application, a combination of the highway query algorithm with both
optimisations gives only a comparatively small improvement compared to using only one
optimisation. In contrast to the exact algorithm, the approximate variant reduces the search
space size and the query time considerably—e.g., to 19% and 28% in case of Europe (relative
to using only the distance table optimisation)—, while guaranteeing a maximum error of
10% and achieving a total error of 0.056% in our random sampleof 1 000 000(s, t)-pairs
(refer to Tab. 7). Some results for US subgraphs can be found in Tab. 12 in Appendix A.

Using adistance metric, ALT gets more effective and beats the distance table optimisa-
tion since much better lower bounds are produced: the negative effect described in Fig. 4 is
weakened. Furthermore, in this case, a combination with both optimisations is worthwhile:
the query time is reduced to 40% in case of Europe (relative tousing only the distance table
optimisation). While the highway query algorithm enhancedwith a distance table has 7.5
times slower query times when applied to the European graph with the distance metric in-
stead of using the travel time metric, the combination with both optimisations reduces this
performance gap to a factor of 3.5—or even 1.4 when the approximate variant is used.

The performance for theunit metricranks somewhere in between. Although computing
shortest paths in road networks based on the unit metric seems kind of artificial, we observe
a hierarchy in this scenario as well, which explains the surprisingly good preprocessing
and query times: when we drive on urban streets, we encountermuch more junctions than
driving on a national road or even a motorway; thus, the number of road segments on a path
is somewhat correlated to the road type.

Different Landmark Sets.In Tab. 6, we compare different sets of landmarks. Obviously, an
increase of the number of landmarks improves the query performance. However, the rate
of improvement is rather moderate so that using only 16 landmarks and thus, saving some
memory and preprocessing time seems to be a good option. The quality of the selected
landmarks is very similar for the two landmark selection methods that we have considered.
Since the preprocessing times are similar as well, we preferusing the maxCover landmarks
since they are slightly better.

Table 6. Comparison of the search spaces (in terms of number of settled nodes) of the highway query algorithm
using different landmark sets. For each road network (with the travel time metric), the first column contains
the search space size if theA∗ search isnot used. Values in parentheses refer to the search space sizes of
approximate queries.

Europe USA
#landmarks 0 16 24 32 0 16 24 32
core-1 avoid

916
687 (179) 665 (161) 651 (147)

1 098
808 (189) 762 (144) 736 (127)

core-3 maxCover 686 (176) 697 (177) 649 (140) 787 (162) 758 (134) 736 (121)

Local Queries. In Fig. 6, we compare the exact and the approximateHH∗ search in case
of the European network with the travel time metric. (For theUS network the results are
similar. We refer to Fig. 15 in Appendix A.) In the exact case,we observe a continuous
increase of the query times: since the distance between source and target grows, it takes

18

Local Queries HH* (Europe, travel time metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

exact
approx

Fig. 6. Comparison of the query times of the exact and the approximate HH∗ search using the Dijkstra rank methodology.

longer till both search scopes meet. For large Dijkstra ranks, the slope decreases. This can
be explained by the distance table that bridges the gap between the forward and backward
search for long-distance queries very efficiently, no matter whether we deal with a long or a
very long path.

Up to a Dijkstra rank of218, the approximate variant shows a very similar behaviour—
even though at a somewhat lower level. Then, the query timesdecrease, reaching very small
values for very long paths (Dijkstra ranks222–224). This is due to the fact that therelative
inaccuracy of the lower bounds, which is crucial for the stopcondition of the approximate
algorithm, is less distinct for very long paths: hence, mostof the time, the lower bounds
are sufficiently strong to stop very early. However, the large number and high amplitude of
outliers indicates that sometimes goal direction does not work well even for approximate
queries.

Approximation Error.Figure 7 shows the actual distribution of the approximationerror for
a random sample in the European network with the travel time metric, grouped by Dijkstra
rank. (For the European network with the distance metric andthe US network with both
metrics, see Figs. 16–18 in Appendix A.) For paths up to a moderate length (Dijkstra rank
216), at least 99% of all queries in the random sample returned anaccurate result. Only very
few queries approach the guaranteed maximum error rate of 10%. For longer paths, still
more than 94% of the queries give the correct result, and almost 99% of the queries find
paths that are at most 2% longer than the shortest path. The fact that we get more errors
for longer paths corresponds to the running times depicted in Fig. 6: in the case of large
Dijkstra ranks, we usually stop the search quite early, which increases the likelihood of an
inaccuracy.

While the approximate variant of the ALT algorithm gives only a small speedup (com-
pare Fig. 5 with Fig. 8 in Appendix A) and produces a considerable amount of inaccurate
results (in particular for short paths, see Figs. 11 and 13),the approximateHH∗ algorithm

19

Approximation Error HH* (Europe, travel time metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

94
95

96
97

98
99

10
0

94
95

96
97

98
99

10
0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Fig. 7. Actual distribution of the approximation error for a randomsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis starts at94%, i.e., at least 94% of all queries returned an
accurate result.

is much faster than the exact version (in particular for longpaths) and produces a compara-
tively small amount of inaccurate results. This differenceis mainly due to the distance table,
which allows a fast determination of upper bounds—and thus,in many cases early aborts—
and provides accurate long-distance subpaths, i.e., the only thing that can go wrong is that
the search processes in the local area around source and target do not find the right core
entrance points.

In Tab. 7, we compared the effect of different maximum error ratesε. We obtained the
expected result that a larger maximum error rate reduces thesearch space size considerably.
Furthermore, we had a look at the actual error that occurs in our random sample: we divided
the sum of all path lengths that were obtained by the approximate algorithm by the sum of the
shortest path lengths. We find that the resulting total erroris verysmall, e.g., only 0.056%
in case of the European network with the travel time metric when we allow a maximum
error rate of 10%. Similar to the results in Section 5.2, we observe that the total error and
the percentage of inaccurate queries (see Figs. 16 and 18) are much higher when using the
distance metric instead of the travel time metric.

Table 7. Comparison of different maximum error ratesε. By the total error, we give the sum of the path
lengths obtained by the approximate algorithm divided by the sum of the shortest path lengths. Note that these
values are given in percent. This table is based on 1 000 000 random(s, t)-pairs (instead of the usual 10 000
pairs).

Europe USA
metric ε [%] 0 1 2 5 10 20 0 1 2 5 10 20

time
#settled nodes 685 612 523 319 177 103 784 632 516 307 162 86
total error [%] 0 0.0002 0.0015 0.018 0.056 0.112 0 0.0013 0.0073 0.034 0.082 0.144

dist
#settled nodes 2131 1302 843 333 184 1432021 1101 672 277 169 134
total error [%] 0 0.0112 0.0383 0.172 0.329 0.526 0 0.0108 0.0441 0.132 0.193 0.240

20

Complete Description of the Shortest Path.So far, we have reported only the times needed
to compute the shortest pathdistancebetween two nodes. Now, we determine a complete
description of the shortest path. In Tab. 8 we give the additional preprocessing time and the
additional disk space for the unpacking data structures. Furthermore, we report the additional
time that is needed to determine a complete description of the shortest path and to traverse6

it summing up the weights of all edges as a sanity check—assuming that the distance query
has already been performed. That means that the total average time to determine a shortest
path is the time given in Tab. 8 plus the query time given in previous tables. We can conclude
that even Variant 3 uses comparatively little preprocessing time and space. With Variant 3,
the time for outputting the path remains considerably smaller than the query time itself and
a factor 3–5 smaller than using Variant 2. The USA graph profits more than the European
graph since it has paths with considerably larger hop counts, perhaps due to a larger number
of degree two nodes in the input. Note that due to cache effects, the time for outputting
the path using preprocessed shortcuts is likely to be considerably smaller than the time for
traversing the shortest path in the original graph.

Table 8. Additional preprocessing time, additional disk space and query time that is needed to determine a
complete description of the shortest path and to traverse itsumming up the weights of all edges—assuming
that the query to determine its lengths has already been performed. Moreover, the average number of hops—
i.e., the average path length in terms of number of nodes—is given. These figures refer to experiments on the
graphs with the travel time metric. Note that the experiments for Variant 1 have been performed without using
a distance table for the topmost level.

Europe USA
preproc. space query # hopspreproc. space query # hops

[s] [MB] [ms] (avg.) [s] [MB] [ms] (avg.)
Variant 1 0 0 16.70 1 370 0 0 40.64 4 537
Variant 2 71 112 0.45 1 370 71 134 1.32 4 537
Variant 3 75 180 0.17 1 370 75 200 0.27 4 537

6 Discussion

We have learned a few things about landmarkA∗ (ALT) that are interesting independently
of highway hierarchies. We have explained why the lower bounds provided by ALT are
often quite weak and why there are very high fluctuations in query performance. There
are also considerable differences between Western Europe and the US. In Europe, we have
larger execution times for local queries than in the US whereas for long range (average case)
queries, times aresmaller. Executing landmark selection on a graph where sparse subgraphs
have been contracted is profitable in terms of preprocessingtime even if we do not want
highway hierarchies. Similarly, storing distances to landmarks only on this contracted graph
considerably reduces the space overhead of ALT.

For highway hierarchies we have learned that they can also handle the case of travel
distances. Compared to the case of travel times, space consumption is roughly the same
whereas preprocessing time and query time increase by a factor of about 2–3.5. It is to be
expected that any other cost metric that represents some compromise of travel time, distance,
fuel consumption and tolls will have performance somewherewithin this range. Highway

6 Note that we donot traverse the path in the original graph, but we directly scanthe assembled description of the path.

21

hierarchies can be augmented to output shortest paths in a time below the time needed for
computing the distances.

There is a complex interplay between highway hierarchies and the optimisations of dis-
tance tables and ALT. For exact queries using the travel timemetric, distance tables are a
better investment into preprocessing time and space than ALT. One incompatibility between
highway hierarchies and ALT is that the search cannot be stopped when search frontiers
meet. For approximate queries or for the distance metric, all three techniques work together
very well yielding a speedup around four over highway hierarchies alone: Highway hier-
archies save space and time for landmark preprocessing; distance tables obviate search in
higher levels and allow simpler and faster ALT search with very effective goal direction.
ALT provides good pruning opportunities for the distance metric and an excellent sense of
goal direction for approximate queries yielding high quality routes most of the time while
never computing very bad routes.

An interesting route of future research is to consider a combination of highway hier-
archies with geometric containers or edge flags [10–12]. Highway hierarchies might har-
monise better with these methods than with ALT because similar to highway hierarchies
they are based on truncating search at certain edges. There is also hope that their high pre-
processing costs might be reduced by exploiting the highwayhierarchy.

Very recently,transit node routing(TNR) and related approaches [20, 21] have acceler-
ated shortest path queries by another two orders of magnitude. Roughly, TNR precomputes
shortest path distances toaccess pointsin a transit node setT (e.g., the nodes at the high-
est level of the highway hierarchy). During a query between “sufficiently distant” nodes, a
distance table forT can be used to bridge the gap between the access points of source and
target. However, TNR needs considerably more preprocessing time than the approach de-
scribed in this paper. Furthermore, the currently best implementation of TNR uses highway
hierarchies for preprocessing and local queries. It is likely that also landmarks might turn out
to be useful in future versions of TNR. On the one hand, landmarks yield lower bounds that
can be used forlocality filtersneeded in TNR. On the other hand, the precomputed distances
to access points could be used as landmark information for speeding up local search.

Acknowledgements

We would like to thank Timo Bingmann for work on visualisation tools.

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik1 (1959) 269–271
2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis forthe heuristic determination of minimum cost paths. IEEE

Transactions on System Science and Cybernetics4(2) (1968) 100–107
3. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A∗ meets graph theory. In: 16th ACM-SIAM Symposium

on Discrete Algorithms. (2005) 156–165
4. Goldberg, A.V., Werneck, R.F.: An efficient external memory shortest path algorithm. In: Workshop on Algorithm

Engineering and Experimentation. (2005) 26–40
5. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: 13th European Symposium on

Algorithms. Volume 3669 of LNCS., Springer (2005) 568–579
6. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: 14th European Symposium on Algorithms. Volume

4168 of LNCS., Springer (2006) 804–816
7. Gutman, R.: Reach-based routing: A new approach to shortest path algorithms optimized for road networks. In: 6th

Workshop on Algorithm Engineering and Experiments. (2004)100–111

22

8. Goldberg, A., Kaplan, H., Werneck, R.: Reach forA∗: Efficient point-to-point shortest path algorithms. In: Workshop
on Algorithm Engineering & Experiments, Miami (2006) 129–143

9. Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using
Precomputed Cluster Distances. In: 5th Workshop on Experimental Algorithms (WEA). Number 4007 in LNCS,
Springer (2006) 316–328

10. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest paths in large sparse graphs. In: 11th
European Symposium on Algorithms. Volume 2832 of LNCS., Springer (2003) 776–787

11. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D.,Willhalm, T.: Partitioning graphs to speed up Dijkstra’s algo-
rithm. In: 4th International Workshop on Efficient and Experimental Algorithms. (2005) 189–202

12. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical back-
ground. In: Geoinformation und Mobilität – von der Forschung zur praktischen Anwendung. Volume 22., IfGI prints,
Institut für Geoinformatik, Münster (2004) 219–230

13. Ikeda, T., Hsu, M., Imai, H., Nishimura, S., Shimoura, H., Hashimoto, T., Tenmoku, K., Mitoh, K.: A fast algorithm
for finding better routes by AI search techniques. In: Vehicle Navigation and Information Systems Conference. IEEE.
(1994)

14. Sedgewick, R., Vitter, J.S.: Shortest paths in Euclidean space. Algorithmica1 (1986) 31–48
15. Willhalm, T.: Engineering Shortest Path and Layout Algorithms for Large Graphs. PhD thesis, Universität Karlsruhe

(TH), Fakultät für Informatik (2005)
16. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In: 9th DIMACS Implementation Chal-

lenge [18]. (2006)
17. U.S. Census Bureau, Washington, DC: UA Census 2000 TIGER/Line Files. http://www.census.gov/geo/

www/tiger/tigerua/ua tgr2k.html (2002)
18. 9th DIMACS Implementation Challenge: Shortest Paths.http://www.dis.uniroma1.it/∼challenge9/

(2006)
19. R Development Core Team: R: A Language and Environment for Statistical Computing. http://www.

r-project.org (2004)
20. Müller, K.: Design and implementation of an efficient hierarchical speed-up technique for computation of exact

shortest paths in graphs. Master’s thesis, Universtät Karlsruhe (2006) supervised by D. Delling, M. Holzer, F. Schulz,
and D. Wagner.

21. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road
networks. In: Workshop on Algorithm Engineering and Experiments. (2007)

23

A Further Experiments

Table 9. DIMACS Challenge [18] benchmarks for US (sub)graphs (querytime [ms]).

metric
graph time dist
NY 29.6 28.5
BAY 34.7 33.3
COL 51.5 49.0
FLA 134.8 120.5
NW 161.1 146.1
NE 225.4 197.2

CAL 291.1 235.4
LKS 461.3 366.1

E 681.8 536.4
W 1 211.2 988.2

CTR 4 485.7 3 708.1
USA 5 355.6 4 509.1

Table 10. Overview of the preprocessing for different selection strategies on the US network. All figures are
given in minutes of computation time. Generating 16 maxCover landmarks on the whole graph requires more
than 4 GB RAM. Therefore, these landmarks were generated on an AMD Opteron Processor 252 clocked at
2.6 GHz with 16 GB main memory.

full graph core-1 core-2 core-3
metric preproc. [min]avoid adv.av. maxCovavoid adv.av. maxCovavoid. adv.av. maxCovavoid adv.av. maxCov

highway info – – – 3.4 3.4 3.4 14.9 14.9 14.9 18.5 18.5 18.5
time selection 20.5 30.5 105.2 3.1 4.5 28.4 0.5 0.7 5.6 0.1 0.2 1.2

distances – – – 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1
highway info – – – 3.1 3.1 3.1 17.4 17.4 17.4 26.3 26.3 26.3

dist selection 18.3 26.4 97.2 2.9 4.2 28.2 0.6 0.9 5.8 0.2 0.2 1.5
distances – – – 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8

24

Table 11. Comparison of the exact and approximate ALT algorithm. The landmarks are taken from the full
graph. The figures are based on 1 000 random queries on 10 different sets of 16 landmarks.

Europe USA
#settled nodes inaccurate queries#settled nodesinaccurate queries

metric exact approx. min – max exact approx. min – max
avoid 93 520 81 582 9.8% – 11.9% 220 333 206 165 7.4% – 10.1%

time adv.av. 86 340 74 706 9.3% – 12.6% 210 703 194 920 7.6% – 9.6%
maxCover 75 220 63 112 10.7% – 11.7% 175 359 161 230 7.6% – 9.6%
avoid 253 552 225 61831.5% – 38.4% 308 823 289 701 24.8% – 29.9%

dist adv.av. 256 511 227 77930.9% – 38.0% 302 521 282 410 24.3% – 29.3%
maxCover230 110 203 56431.3% – 34.9% 282 162 265 091 27.3% – 22.3%

Local Queries approximate ALT (travel times metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

0.
1

1
10

10
0

10
00

Europe
USA

Fig. 8. Comparison of the query times on the road network of Western Europe and the USA using the approx-
imate ALT algorithm. The landmarks are chosen from the core-3 using maxCover.

Table 12. Performance of HH∗ (using a distance table and landmarks) for US subgraphs withtravel time
metric. For small graphs, we deviate from the default settings: the landmark selection takes place in the core
of the level given in column 2, the construction of the highway hierarchy is stopped at the core of the level
given in column 3.

landm. selection dist. table preproc. total disk #settled query
graph core level core leveltime [min] space [MB] nodes time [ms]
NY 2 3 0:55 140 334 0.22
BAY 2 3 0:24 40 329 0.20
COL 2 3 0:29 49 327 0.19
FLA 3 3 1:08 115 354 0.22
NW 3 4 1:06 87 509 0.33
NE 3 4 2:14 169 526 0.36

CAL 3 4 2:23 176 519 0.35
LKS 3 4 4:25 398 543 0.39

E 3 5 4:07 255 650 0.46
W 3 5 7:22 453 695 0.50

CTR 3 5 23:12 1 132 762 0.73

25

Local Queries ALT (distance metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

0.
1

1
10

10
0

10
00

Europe
USA

Fig. 9. Comparison of the query times on the road network of Western Europe and the USA using the ALT al-
gorithm. The landmarks are chosen from the core-3 using maxCover.

Local Queries approximate ALT (distance metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
1

1
10

10
0

10
00

0.
1

1
10

10
0

10
00

Europe
USA

Fig. 10. Comparison of the query times on the road network of Western Europe and the USA using the ap-
proximate ALT algorithm. The landmarks are chosen from the core-3 using maxCover.

26

Approximation Error ALT (Europe, travel time metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

85
90

95
10

0

85
90

95
10

0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Fig. 11. Actual distribution of the approximation error for a randomsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis starts at85%, i.e., at least 50% of all queries returned an
accurate result.

Approximation Error ALT (Europe, distance metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

50
60

70
80

90
10

0

50
60

70
80

90
10

0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Fig. 12. Actual distribution of the approximation error for a randomsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis starts at50%, i.e., at least 50% of all queries returned an
accurate result.

27

Approximation Error ALT (USA, travel time metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

80
85

90
95

10
0

80
85

90
95

10
0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Fig. 13. Actual distribution of the approximation error for a randomsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis starts at80%, i.e., at least 80% of all queries returned an
accurate result.

Approximation Error ALT (USA, distance metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

60
65

70
75

80
85

90
95

10
0

60
65

70
75

80
85

90
95

10
0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Fig. 14. Actual distribution of the approximation error for a randomsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis starts at60%, i.e., at least 60% of all queries returned an
accurate result.

28

Local Queries HH* (USA, travel time metric)

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

exact
approx

Fig. 15. Comparison of the query times of the exact and the approximateHH∗ search.

Approximation Error HH* (Europe, distance metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

70
75

80
85

90
95

10
0

70
75

80
85

90
95

10
0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Fig. 16. Actual distribution of the approximation error for a randomsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis starts at70%, i.e., at least 70% of all queries returned an
accurate result.

29

Approximation Error HH* (USA, travel time metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

88
90

92
94

96
98

10
0

88
90

92
94

96
98

10
0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Fig. 17. Actual distribution of the approximation error for a randomsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis starts at88%, i.e., at least 88% of all queries returned an
accurate result.

Approximation Error HH* (USA, distance metric)

Dijkstra Rank

P
er

ce
nt

ag
e

211 212 213 214 215 216 217 218 219 220 221 222 223 224

75
80

85
90

95
10

0

75
80

85
90

95
10

0

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

Fig. 18. Actual distribution of the approximation error for a randomsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis starts at75%, i.e., at least 75% of all queries returned an
accurate result.

30

