Highway Hierarchies Star*

Daniel Delling, Peter Sanders, Dominik Schultes, and DwatVagner

Universitat Karlsruhe (TH), 76128 Karlsruhe, Germany,
{del I'i ng, sander s, schul t es, wagner }@r a. uka. de

Abstract. We study two speedup techniques for route planning in roadarks: highway hierarchies
(HH) and goal directed search using landmarks (ALT). It suont that there are several interesting syn-
ergies. Highway hierarchies yield a way to implement landnsselection more efficiently and to store
landmark information more space efficiently than beforeT Ajives queries in highway hierarchies an ex-
cellent sense of direction and allows some pruning of theckespace. For computing shortest distances
and approximately shortest travel times, this combinayiefds a significant speedup over HH alone. We
also explain how to compute actual shortest paths very exfilgi.

1 Introduction

Computing fastest routes in a road netwoéks= (V, E') from a sources to a targett is
one of the showpieces of real-world applications of aldpnics. In principle, we could use
DIJKSTRA's algorithm [1]. But for large road networks this would betao slow. Therefore,
there is considerable interest in speedup techniques tite pdanning.

A classical technique that gives a speedup of around twoolad networks ididirec-
tional searchwhich simultaneously searches forward freanand backwards from until
the search frontiers meet. Most speedup techniques ugsediidnal search as an (optional)
ingredient.

Another classical approach is goal direction ¥a search[2]: lower bounds define a
vertex potential that directs search towards the targes dpproach was recently shown to
be very effective if lower bounds are computed using preagaegpshortest path distances
to a carefully selected set of about R&ndmarknodes [3, 4] using th&riangle inequality
(ALT). Speedups up to a factor 30 over bidirectionald3TRA can be observed.

A property of road networks worth exploiting is their inhetdierarchy. Commercial
systems use information on road categories to speed uphsé8rdficiently far away’
from source and target, only ‘important’ roads are useds Téguires manual tuning of the
data and a delicate tradeoff between computation speedudagismality of the computed
routes. In a previous paper [5] we introduced the ideautomaticallycomputehighway
hierarchiesthat yieldoptimal routesuncompromisingly quicklyThis was the first speedup
technique that was able to preprocess the road network aftaneat in realistic time and ob-
tain large speedups (several thousands) ovex £XrRA's algorithm. In [6] the basic method
was considerably accelerated using many small measurasargtiistance tablesshortest
path distances in the highest level of the hierarchy aregpngaited. This way, it suffices to
search locally around source and target node until the esstqeaith distance can be found by
accessing the distance table.

A different hierarchy based method—reach based routing-pfpfits considerably from
a combination with ALT [8]. The present state of affairs iattthe combined method from

* Partially supported by DFG grant SA 933/1-3. and by the Fu&nd Emerging Technologies Unit of EC (IST priority
— 6th FP), under contract no. FP6-021235-2 (project ARRIVAL

[8] shows performance somewhat inferior to highway hidrees with distance tables but
without goal direction. Both methods turn out to be clos@lated. In particular, [8] uses
methods originally developed for highway hierarchies thiewe fast preprocessing. Here,
we explore the natural question how highway hierarchiesveatombined with goal directed
search in general and with ALT in particular.

1.1 Overview and Contributions

In the following sections we first review highway hierarchia Section 2 (Algorithm HH)
[6]. A new result presented there is a very fast algorithmebgulicitly computing the short-
est paths by precomputing unpacked versions of shortciesedgection 3 reviews Algo-
rithm ALT [3, 4] and introduces refined algorithms for selegtlandmarks. The main in-
novation there is restricting landmark selection to nodesigher levels of the highway
hierarchy.

The actual integration of highway hierarchies with ALT (Alghm HH") is introduced
in Section 4. This is nontrivial in several respects. Fomepke, we need incremental access
to the distance tables for finding upper bounds and a diftesay to control the progress
of forward and backward search. We also have to overcomertigm that search cannot
be stopped when search frontiers meet. On the other hand,dhe several simplifications
compared to ALT. Abandoning the reliance on a stoppingmoiteallows us to use simpler,
faster, and stronger lower bounds. Using distance tablatas the need for dynamic land-
mark selection. Another interesting approach is to stogé&aech when a certain guaranteed
solution quality has been obtained. There are severalestiag further optimisations. In
particular, we can be more space efficient than ALT by stonm¢andmark information on
the lowest level of the hierarchy. We describe how the mgsgiformation can be recon-
structed efficiently at query time. As a side effect, we idtroe a way to limit the length
of shortcuts. This measure turns out to be of independesrtast since it also improves the
basic HH algorithm.

Section 5 reports extensive experiments performed usiag) metworks of Western Eu-
rope and the USA. Section 6 summarises the results and esipiossible future work.

1.2 MoreRedated Work

There are several other approaches to goal directed sé€ancHirst candidate for combi-
nation with highway hierarchies weRrecomputed @ister Distanceg9]. PCDs allow the
computation of upper and lower bounds based on precompigithdes between partitions
of the road networks. These lower bounds cannot be usedfeearch since they can pro-
duce negative reduced edge weights. The search spaceltha ptiuned by discontinuing
search at nodeif the lower bound fromv to ¢ indicates that the best upper bound seen so far
cannot possibly be improved. An advantage of PCDs over lankisris that they need less
space. We did not implement this however since PCDs arerrahitective for search in the
lower levels of the hierarchy and since our distance tabtemgation from [6] is already
very effective for pruning search at the higher levels oftitegarchy. In contrast, landmarks
can be used together with* search and thus can direct the search towards the targadwlre
in the lower levels of the hierarchy.

An important family of speedup techniques [10-12] assesiaformation with each
edgee. This information specifies a superset of the nodes reacled on some short-

2

est pathGeometric containergl 0] require node coordinates and store a simple geomktrica
object containing all the nodes reached via a shortest gdtfe flagpartition the graph into
regions. For each edgeand each regio® one bit specifies whether there is a shortest path
via e into regionR [11, 12]. Both techniques alone already contain both dwadnhforma-

tion and hierarchy information so that very big speedupspamable to highway hierarchies
can be achieved. However, so far these methods would havielfomgly large preprocess-
ing times for the largest available road networks. Theestbese approaches looked not so
interesting for a first attempt to combine goal directed &earth highway hierarchies.

2 Highway Hierarchies

The basic idea of the highway hierarchies approach is thatd®isome local areas around
the source and the target node, only a subset of ‘importaige® has to be considered
in order to be able to find the shortest path. The conceptlota areais formalised by
the definition of a neighbourhood node’saf(v) for each node. Then, the definition of

a highway networkof a graphG = (V, E) that has the property that all shortest paths
are preserved is straightforward: an edgev) € FE belongs to the highway network iff
there are nodes,t € V such that the edge:, v) appears in the canonical shortest path
(8,...,u,v,...,t) fromstotin G with the property that ¢ N(s) andu & N(t).

The size of a highway network (in terms of the number of nodas) be considerably
reduced by a contraction procedure: for each nodee check aypassability criterion
that decides whether should bebypassed-a operation that creates shortcut edgesv)
representing paths of the forta, v, w). The graph that is induced by the remaining nodes
and enriched by the shortcut edges formstitve of the highway network. The bypassability
criterion takes into account the degree of the nedad the number of shortcuts that would
be created ity was bypassed. For details, we refer to [6].

A highway hierarchyf a graphG consists of several levels), G1, G, ..., G. Level O
corresponds to the original graph Level 1 is obtained by computing tieéghway network
of level O, level 2 by computing the highway network of theecof level 1 and so on.

2.1 Highway Query

In [5], we show how the highway hierarchy of a given graph carcénstructed efficiently.
After that, we can use theighway query algorithnj6] to perform s-t queries. It is an
adaptation of the bidirectional version of IB8STRA's algorithm. The search startssaaind

t in level 0. When the neighbourhood obr ¢ is left, we switch to level 1 and continue the
search. Similarly, we switch to the next level if the neightimod of the entrance point to
the current level is left (Fig. 1). When the core of some léwad been entered, we never
leave it again: in particular, we do not follow edges thatllema bypassed node; instead, we
use the shortcuts that have been created during the cotnstruc

Y1n [6], we give more details on the definition of neighbourtisoln particular, we distinguish between a forward and a
backward neighbourhood. However, in this context, we wdikiklto slightly simplify the notation and concentrate on
the concepts that are important to understand the subsesgrions.

2 For each connected node péir; t), we select a uniqueanonical shortest patin such a way that each subpath of a
canonical shortest path is canonical as well. For detadsiefer to [5].

3

@ entrance point to level|0
@ entrance point to level |1
@ entrance point to level 2

Fig. 1. A schematic diagram of a highway query. Only the forward geatarted from the source nosés depicted.

At this point, we can observe two interesting propertieheftiighway query algorithm.
First, it isnotgoal-directed. In fact, the forward search ‘knows’ nothatgput the target and
the backward search ‘knows’ nothing about the source, ddothth search processes work
completely independently and spread into all directiorzoBd, when both search scopes
meet at some point, we cannot easily abort the search—imasrio the bidirectional ver-
sion of DIJKSTRA's algorithm, where we can abort immediately after a commaaterhas
been settled from both sides. The reason for this is illtetirén Fig. 2. In the upper part of

Level 2
Level 1

Level 0

Level 2
Level 1

Level 0

Fig. 2. Schematic profile of a bidirectional highway query.

the figure, the bidirectional query from a nogdt a node along a pathP is represented by

a profile that shows the level transitions within the highvaggrarchy. To get a sequential
algorithm, at each iteration we have to decide whether a frodethe forward or the back-
ward queue is settled. We assume that a strategy is usechtivatr$ the smaller element.
Thus, both search processes meet in the middle, at modéen this happens, a path from
s tot has been found. However, we have no guarantee that it is treeshone. In fact, the
lower part of the figure contains the profile of a shorter patfrom s to ¢, which is less
symmetric than the profile dP. Note that the very flexible definition of the neighbourhoods
allows such asymmetric profiles. Whermn P is settled from both sides has been reached
on Q) by the backwards search, bubt by the forward search since a search process never
goes downwards in the hierarchy: therefore, at notlee forward search is not continued on
the pathQ). We find the shorter patf) not until the backward search has reacheevhich
happensfter P has been found. Hence, it would be wrong to abort the seattbnwhas
been settled.

In [5], we introduced some rather complicated abort ciatewhich we dropped in [6]
since they did reduce the search space, but the evaluattbe cfiteria was too expensive.

2.2 Using aDistance Table

The construction of less levels of the highway hierarchythedisage of a completiestance
tablefor the core of the topmost level can considerably accedeta query: whenever the
forward (backward) search enters the core of the topmost &vsome node, « is added
to a node setl’ (I) and the search is not continued framSince all distances between
the nodes in the set§ and 7T have been precomputed and stored in a table we can easily
determine the shortest path length by considering all nadts @, v), u € T LU E I and
summing upd(s,) + d(u,v) + d(v, t). For details, we refer to [6].

Using the dlstance table can be seen as extreme case Oflgﬂﬂbd search: from the
nodes in the set’ , we directly ‘jump’ to the nodes in the sét, which are close to the
target. Thus, we can say that the highway query with the mtlzetaable optimisation works
in two phases: a strictly non-goal-directed phase till #ts '§ andT have been determined,
followed by a ‘goal-directed jump’ using the distance table

2.3 Complete Description of the Shortest Path

So far, we have dealt only with the computation of shortelt gstancesin order to deter-
mine a complete description of the shortest path, a) we lmabedge the gap between the
forward and backward core entrance points and b) we havep@aneikthe used shortcuts to
obtain the corresponding subpaths in the original graph.

Problem a) can be solved using a simple algorithm: We stdrt thie forward core en-
trance point:. As long as the backward entrance pairtas not been reached, we consider
all outgoing edgesu, w) in the topmost core and check whethét, w)+d(w, v) = d(u, v);
we pick an edgéu, w) that fulfils the equation, and we set= w. The check can be per-
formed using the distance table. It allows us to greedilgaeine the next hop that leads to
the the backward entrance point.

Problem b) can be solved without using any extra data (Vadanfor each shortcut
(u,v), we perform a search fromto v in order to determine the path in the original graph;
this search can be accelerated by using the knowledge théitshedge of the path enters
a component’ of bypassed nodes, the last edge leads end all other edges are situated
within the componend’.

However, if a fast output routine is required, it is neceggarspend some additional
space to accelerate the unpacking process. We use a rafiiestgrated data structure to
represent unpacking information for the shortcuts in a egficient way (Variant 2). In
particular, we do not store a sequence of node IDs that deseripath that corresponds
to a shortcut, but we store onhop indices for each edgéw, v) on the path that should
be represented, we store its index minus the index of theddge ofu. Since in most
cases the degree of a node is very small, these hop indicdsecstiored using only a few
bits. The unpacked shortcuts are stored in a recursive wgy,tlke description of a level-2
shortcut may contain several level-1 shortcuts. Accoflglirige unpacking procedure works
recursively.

To obtain a further speed-up, we have a variant of the unpgdata structures (Vari-
ant 3) that caches the complete descriptions—without semus—of all shortcuts that be-
long to the topmost level, i.e., for these important shdgthbat are frequently used, we do
not have to use a recursive unpacking procedure, but we saagpend the corresponding
subpath to the resulting path.

3 A* Search Using Landmarks

In this section we explain the known techniqueAsfsearch [2] in combination with land-
marks. We follow the implementation presented in [4]. Int®er3.2 we introduce a new
landmark selection technique calladvancedAvoidFurthermore, we present how the se-
lection of landmarks can be accelerated using highway ifieies.

The search space of I IXSTRA's algorithm can be visualised as a circle around the
source. The idea of goal-directed drF search is to push the search towards the target.
By adding a potentiat : V' — R to the priority of each node, the order in which nodes are
removed from the priority queue is altered. A ‘good’ potahtowers the priority of nodes
that lie on a shortest path to the target. It is easy to seethet equivalent to IIKSTRA'S
algorithm on a graph witreduced costformally w, (u, v) = w(u,v) — 7 (u) + 7 (v). Since
DIJKSTRA's algorithm works only on nonnegative edge costs, not akpivals are allowed.
We call a potentiak feasibleif w,(u,v) > 0 for all (u,v) € E. The distance from each
nodev of G to the target is the distance from to ¢ in the graph with reduced edge costs
minus the potential of plus the potential of. So, if the potentiak(¢) of the target is zero,
7(v) provides dower boundfor the distance frome to the target.

Bidirectional A*. At a glance, combiningl* and bidirectional search seems easy. Simply
use a feasible potential for the forward and a feasible potentialfor the backward search.
However, this does not work due to the fact that both seanahigst work on different re-
duced costs, so that the shortest path might not have bead felen both searches meet.
This can only be guaranteedsif andr, areconsistenmeaningw, (u,v) in G is equal to
wy, (v, u) in the reverse graph. We use the variant of an average paitéuniction [13] de-
fined agp;(v) = (7¢(v)—m,(v))/2 for the forward ang, (v) = (7, (v)—7,(v))/2 = —ps(v)
for the backward search. By adding(¢)/2 to the forward andr(s)/2 to the backward
search,p; andp, provide lower bounds to the target and source, respectiidie that
these potentials are feasible and consistent but provideatower bounds than the original
ones.

ALT. There exist several techniques [14, 15] how to obtain féagbtentials using the
layout of a graph. The ALT algorithm uses a small number ofsedso callethndmarks—
and the triangle inequality to compute feasible potenti@igen a setS C V' of landmarks
and distanced(L,v), d(v, L) for all nodesv € V and landmarkd. € S, the following
triangle inequations hold:

d(u,v)+d(v,L) > d(u,L) and d(L,u)+ d(u,v) > d(L,v)

Therefored(u, v) := maxycs max{d(u, L) — d(v, L),d(L,v) — d(L,u)} provides a lower
bound for the distanc&(«, v). The quality of the lower bounds highly depends on the qualit
of the selected landmarks.

Our implementation uses the tuning techniquesiaive landmarkspruning and the
enhanced stopping criterion. We stop the search if the summmum keys in the forward
and the backward queue exceed- ps(s), wherey represents the tentative shortest path
length and is therefore an upper bound for the shortest patjth froms to ¢. For each
s-t query only two landmarks—one ‘before’ the source and onditi# the target—are
initially used. At certain checkpoints we decide whetheada an additional landmark to
the active set, with a maximal amount of six landmarks. Rrgmneans that before relaxing
an arc(u, v) during the forward search we also check whett{@ru) +w(u, v) +7¢(v) < p
holds. This technique may be applied to the backward seasityeNote that for pruning,
the potential function need not be consistent.

3.1 Landmark-Selection

A crucial pointin the success of a high speedup when using &lifie quality of landmarks.
Since finding good landmarks is hard, several heuristicd][8xist. We focus on the best
known techniqueavoid andmaxCover

Avoid. This heuristic tries to identify regions of the graph that aot well covered by the
current landmark set. Therefore, a shortest-path trégis grown from a random node
The weightof each node is the difference betweetl(v,r) and the lower bound(v, r)
obtained by the given landmarks. Thizeof a nodev is defined by the sum of its weight
and the size of its children .. If the subtree of’, rooted aty contains a landmark, the size
of v is set to zero. Starting from the node with maximum siZeis traversed following the
child with highest size. The leaf obtained by this traversaldded toS. In this strategy, the
first root is picked at random. The following roots are picketh a probability proportional
to the square of the distance to its nearest landmark.

MaxCover [4]. The main disadvantage of avoid is the starting phase of thadtie. The
first root is picked at random and the following landmarks laighly dependent on the
starting landmark. MaxCover improves on this by first chngsi candidate set of landmarks
(using avoid) that is about four times larger than needeé. [&hdmarks actually used are
selected from the candidates using several attempts wittehdearch routine. Each attempt
starts with a random initial selection.

3.2 New Selection Techniques

In the following we introduce a new heuristic calladvancedAvoido select landmarks.
Furthermore, we use the highway hierarchies to speed upetbetion of landmarks.

AdvancedAvoid Another approach to compensate for the disadvantages af svto ex-
change the first landmarks generated by the avoid heurdtoe precisely, we generate
avoid landmarks, then in each iteratioteke the landmark& — 1)k’ + 1 to ik’ from the
setS and generaté’ new landmarks using avoid again. We repeat this procedtiraes.
The advantage of advancedAvoid towards maxCover is the atatipn time. While max-
Cover takes about five times longer than avoid, the overtaaatiivancedAvoid is aboudt%
for k = 16, k¥’ = 6, andr = 1 on the road network of Western Europe.

7

Core Landmarks.The computation of landmarks is expensive. Calculating@uoaer land-
marks on the European network takes about 75 minutes, winistieicting the whole high-
way hierarchy can be done in about 15 minutes. A promisingagmh is to use the highway
hierarchy to reduce the number of possible landmarks: T¥al-le core of the European
road network has six times fewer nodes than the original oxtand its construction takes
only about three minutes. Using the core as possible pasifar landmarks, the computa-
tion time for calculating landmarks (all heuristics) candeereased. Using only the nodes
of higher level cores reduces the time for selecting lan#siaven more. Figure 3 shows
an example of 16 advancedAvoid landmarks, generated oreteé 1 core of the European
network.

Fig. 3. 16 advancedAvoid core 1 landmarks on the Western Europeahnetwork

4 Combining Highway Hierarchiesand A* Search

Previously (see Section 2), we strictly separated the bgarase to the topmost core from
the access to the distance table: first, the sets of entram'ntsﬁ) and T into the core of

the topmost level were determined, and afterwards the tableups were performed. Now
we interweave both phases: whenever a forward core entgoinéu is discovered, it is
added to] and we immediately consider all pairg, v), v € 7, in order to check whether
the tentative shortest path lengtltan be improved. (An analogous procedure applies to the
discovery of a backward core entrance point.) This new atrés advantageous since we
can use the tentative shortest path lengths an upper bound on the actual shortest path
length. In [5, 6], the highway query algorithm used a stratiat compares the minimum
elements of both priority queues and prefers the smalleiroosler to sequentialise forward

8

and backward search. If we want to obtain good upper boungsfast, this might not
be the best choice. For example, if the source node belongsdensely populated area
and the target to a sparsely populated area, the distarmegiie source and target to the
entrance points into the core of the topmost level will bey\dfferent. Therefore, we now
choose a strategy that balangds| and| I |, preferring the direction that has encountered
less entrance points. In case of equality (in particulathenbeginningwhen/ | = | I | =

0), we use a simple alternating strategy.

We enhance the highway query algorithm with goal-directgohbilities—obtaining an
algorithm that we calHH" search—by replacing edge weights bgduced costsising po-
tential functionsr; and, for forward and backward search. By this means, the search is
directed towards the respective target, i.e., we are likeliind somes-t path very soon.
However, just using the reduced costs only changesrtiher in which the nodes are settled,
it does not reduce the search space. The ideal way to beafitire early encounter of the
forward and backward search would be to abort the searchomsasoans-t path has been
found. And, as a matter of fact, in case of the ALT algorithfpf&ven in combination with
reach-based routing [8]—it can be shown that an immediatet &possible without losing
correctness if consistent potential functions are useel &&tion 3). In contrast, this does
not apply to the highway query algorithm since even in the-goal-directed variant of the
algorithm, we cannot abort when both search scopes havesgeeBgction 2).

Fortunately, there is another aspect of goal-directedchdhat can be exploited, namely
pruning finding anys-t path also means finding an upper boyndn the length of the
shortests-t path. Comparing the lower bounds with the upper bound carskd to prune
the search. In Section 3, the pruningeafgeshas already been mentioned. Alternatively, we
can prunenodes if the key of a settled node is greater than the upper bound, we do not
have to relax:’s edges. Note that, using reduced costs, the keyistthe distance from the
corresponding source toplus the lower bound on the distance frarnto the corresponding
target.

Since we do not abort when both search scopes have met andsbewa have the
distance table, a very simple implementation of the ALT &t is possible. First, we
do not have to use consistent potential functions. Insteadjirectly use the lower bound
to the target as potential for the forward search and, anaklyg, the lower bound from
the source as potential for the backward search. Theset@dtiemctions make the search
processes approach their respective target faster thag csinsistent potential functions so
that we get good upper bounds very early. In addition, theerpydning gets very effective:
if one node is pruned, we can conclude that all nodes lefterstime priority queue will be
pruned as well since we use the same lower bound for pruniddaarthe potential that is
part of the key in the priority queue. Hence, in this case, areimmediately stop the search
in the corresponding direction.

Second, it is sufficient to select at the beginning of the gder each search direction
only one landmark that yields the best lower bound. Sincestfach space is limited to a
relatively small local area around source and target (dtlegalistance table optimisation),
we do not have to pick more landmarks, in particular, we ddwawt to add additional land-
marks in the course of the query, which would require fluskand rebuilding the priority
qgueues. Thus, adding* search to the highway query algorithm (including the distatable
optimisation) causes only little overhead per node.

9

However, there is a considerable drawback. While the gwattkd search (which gives
good upper bounds) works very well, the pruning is not vercessful when we want to
computefastespaths, i.e., when we use a travel time metric, because tiedovler bounds
are usually too weak. Figure 4 gives an example for this elasien, which occurs quite
frequently in practice. The first part of the shortest patimfr to ¢ corresponds to the first

Ug ®

@) (b)

Fig.4. Two snapshots of the search space oftHii* search using a travel time metric. The landmarkf
the forward search fromto ¢ is explicitly marked. The landmark used by the backwarddem somewhere
below s and not included in the chosen clipping area. The searctespddack, parts of the shortest path are
represented by thick lines. In addition, motorways are liggked in red.

part of the shortest path frosto the landmark:. Thus, the reduced costs of these edges are
zero so that the forward search starts with traversing thisnoon subpath. The backward
search behaves in a similar way. Hence, we obtain a perfgarupound very early (a).
Still, the lower bound oni(s, t) is quite bad: we have(s,u) — d(t,u) < d(s,t). Since
staying on the motorway and going directly frofto « is much faster than leaving the
motorway, driving through the countryside t@nd continuing tay, the distancel(s, t) is
clearly underestimated. The same applies to lower bound&w@n) for nodesv close to

s. Hence, pruning the forward search does not work properiyhabthe search space still
spreads into all directions before the process terminafesr contrast, the nodelies on
the shortest path (in the reverse graph) friota the landmark that is used by the backward
search. (Since this landmark is very far away to the southastnot been included in the
figure.) Therefore, the lower bound is perfect so that thé&waod search stops immediately.
However, this is a fortunate case that occurs rather rarely.

10

4.1 Approximate Queries

We pointed out above that in most casesfimd a (near) shortest path very quickly, but it
takes much longer until wenowthat the shortest path has been found. We can adapt to this
situation by defining an abort condition that leads to an exprate query algorithm: when
anodeu is removed from the forward priority queue and we haivee)-(d(s, u)+d(u,t)) >

i (Wheree > 0 is a given parameter), then the search is not continued irottveard
direction. In this case, we may miss somgpaths whose length is d(s, u) + d(u, t) since

the key of any remaining elementin the priority queue is> d(s,u) + d(u,t) and it is a
lower bound on the length of the shortest path frema v to ¢. Thus, if the shortest path

is among these paths, we have, t) > d(s,u) + d(u,t) > u/(1 + ¢), i.e., we have the
guarantee that the best path that we have already found énbogth corresponds to the
upper bound:) is at most(1 + ¢) times as long as the shortest path. An analogous stopping
rule applies to the backward search.

4.2 Optimisations

Better Upper BoundsWe can use the distance table to get good upper bounds evien. ear
So far, the distance table has only been applied to entraviogsgnto the coré/] of the
topmost level. However, in many cases we encounter nodebelang toV/] earlier during
the search process. Even the source and the target node hmlalty to the core of the
topmost level. Still, we have to be careful since the distaable only contains the shortest
path lengths within the topmost core and a path between tdesiol’; might be longer if it

is restricted to the core of the topmost level than usingdges of the original graph. This is
the reason why we have not used such a premature jump to thestigvel before. But now,
in order to just determine upper bounds, we could use thedi@uhl table look-ups. The
effect is limited though because finding good upper bound&sveery well anyway—the
lower bounds are the crucial part. Therefore, the exactihgo does without the additional
look-ups. The approximate algorithm applies this techaituthe nodes that remain in the
priority queues after the search has been terminated dieenight improve the result
For example, we would get an improvement if the goal-dirdstarch led us to the wrong
motorway entrance ramp, but the right entrance ramp hasaat keen inserted into the
priority queue.

Reducing Space ConsumptiotWe can save preprocessing time and memory space if we
compute and store only the distances between the landmiadkitha nodes in the core of
some fixed levek. Obviously, this has the drawback that we cannot begin viiéhgoal-
directed search immediately since we might start with ndlgigisdo not belong to the levél-
core so that the distances to and from the landmarks are oetrkimherefore, we introduce
an additionainitial query phasewhich works as a normal highway query and is stopped
when all entrance points into the core of le¥ghave been encountered. Then, we can de-
termine the distances fromto all landmarks since the distances frenvia the levelx
core entrance points to the landmarks are known. Analoggiird distances from the land-
marks tot can be computed. The same process is repeated for inteedhaogrce and target
nodes—i.e., we search forward framand backward from—in order to determine the dis-

% In a preliminary experiment, the total error observed inraicam sample was reduced from 0.096% to 0.053%.

11

tances front to the landmarks and from the landmarkstdNote that this second subphase
can be skipped when the first subphase has encountered dimchéd edges.

The priority queues of theain query phasare filled with the entrance points that have
been found during (the first subphase of) the initial querggeh We use the distances from
the source or target node plus the lower bound to the targetwoce as keys for these initial
elements. Since we never leave the levalere during the main query phase, all required
distances to and from the landmarks are known and the goedtdd search works as usual.
The final result of the algorithm is the shortest path thatidesesn found during the initial or
the main query phase.

Limiting Component SizesSince the search processes from the source and target to the
level-k core entrance points are often executed twice (once fordieattion), it is important

to bound this overhead. Therefore, we implemented a limihemumber of hops a shortcut
may represent. By this means, the sizes of the componenypagbed nodes are reduced—

in particular, the first contraction step tended to createedarge components of bypassed
nodes so that it took a long time to leave such a component thieesearch was started from
within it. Interestingly, this measure has also a very pesiffect on the worst case analysis

in [6]: it turned out that the worst case was caused by vegel@omponents of bypassed
nodes in some sparsely populated areas, whose sizes nowdmveonsiderably reduced

by the shortcut hops limit.

Rearranging NodesSimilar to [16], after the construction has been completetiearrange
the nodes by core level, which improves locality for the skan higher levels and, thus,
reduces the number of cache misses.

5 Experiments

5.1 Environment, | nstances, and Parameters

The experiments were done on one core of a single AMD OpteroceBsor 270 clocked at
2.0 GHz with 4 GB main memory and>2 1 MB L2 cache, running SUSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler24u&ing optimisation
level 3. We use 32 bit integers to store edge weights and patitiis. Benchmark results
can be found in Tab. 9 in Appendix A.

We deal with the road network of Western Eurbpghich has been made available for
scientific use by the company PTV AG. Only the largest strehgennected component is
considered. The original graph contains for each edge aHemgd a road category, e.g.,
motorway, national road, regional road, urban street. VE@asaverage speeds to the road
categories, compute for each edge the average travel tmdeyse it as weight. In addition
to thistravel time metricwe perform experiments on variants of the European grafihavi
distance metri@and theunit metric We also perform experiments on the US road network
(without Alaska and Hawaii), which has been obtained from TWGER/Line Files [17].
Again, we consider only the largest strongest connectegoaent. In contrast to the PTV
data, the TIGER graph is undirected, planarised and disishgs only between four road

414 countries: Austria, Belgium, Denmark, France, Germé#ajy, Luxembourg, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and the UK

12

Table 1. Properties of the used road networks.

Europe USA (Tiger)

#nodes 18010173 23947347
#directed edges 42560279 58333344
#road categories 13 4
average speeds [km/h] 10-130 40-100
neighbourhood sizé&l (time) 60 70
neighbourhood sizél (dist) 100, 200, 300,. .
neighbourhood sizél (unit) 80, 100, 120,..

categories. All graplishave been taken from the DIMACS Challenge website [18].d4bl
summarises the properties of the used networks.

At first, we report only the times needed to compute the shbpath distance between
two nodes without outputting the actual route. These timesaserages based on 10 000
randomly choseffs, t)-pairs. In addition to providing average values, we use tethodol-
ogy from [5] in order to plot query times (and error rates)iaggthe ‘distance’ of the target
from the source, where in this context, thgkstra rankis used as a measure of distance:
for a fixed sources, the Dijkstra rank of a nodeis the rank w.r.t. the order which -
STRA's algorithm settles the nodes in. Such plots are based ot t&b@lom source nodes.
In the last paragraph of Section 5.3, we also give the timedegtto traverse the computed
shortest paths.

Since it has turned out that a better performance is obtaitezh the preprocessing
starts with a contraction phase, we practically skip thé domstruction step (by choosing
neighbourhood sets that contain only the node itself) sothafirst highway network vir-
tually corresponds to the original graph. Then, the firstsegp is the contraction of level 1
to get its core. Note that in this case, distances within tre of level 1 are equal to the
distances between level-1 core nodes in the original graph.

The shortcut hops limit (introduced in Section 4) is set toTlte neighbourhood sizé
(introduced in [5, 6]) for the travel time metrics is set to &d 70 for the European and
the US network, respectively. For the distance metric vasiof both graphs, we use the
linearly increasing sequence 100, 200, 300as neighbourhood sizes to compute levels 2,
3, 4,... of the hierarchy.

5.2 Landmarks

PreprocessingFirst, we analyse the preprocessing of the ALT algorithmhvdifferent
selection strategies on different cores of the highwayahnay. We use 16 avoid, advance-
dAvoid and maxCover landmarks selected from the whole geayghfrom the core of levels
1-3. For advancedAvoid, we deactivate 6 landmarks onceSsetion 3.2). Table 2 gives an
overview of the preprocessing of the ALT algorithm on thedp@an network. For the US
network, see Tab. 10 in Appendix A.

We observe that the time spent for selecting landmarks dsesesignificantly when
switching to higher cores. Unfortunately, we have to coraphe distances from and to all
nodes in the original graph if we use core landmarks for th& Algorithm (on the full graph

5 Note that the experiments on the full TIGER graphs had beefoqpeed before the final versions, which use a finer
edge costs resolution, were available. We did not repeagxtperiments since we expect hardly any change in our
measurement results.

13

Table 2. Overview of the preprocessing time for different selecttrategies on the European network. All
figures are given in minutes of computation time. Generati@gnaxCover landmarks on the whole graph
requires more than 4 GB RAM. Therefore, these landmarks generated on an AMD Opteron Processor
252 clocked at 2.6 GHz with 16 GB main memory.

full graph core-1 core-2 core-3
metric preproc. [minfvoid adv.av. maxCageavoid adv.av. maxCaavoid. adv.av. maxCaavoid adv.av. maxCov
highway info - - -+ 27 27 2.7 115 115 11.513.7 13.7 13.7
time selection 158 23.2 883 25 3.6 21.2 04 05 33 01 0.1 0.8
distances - - -4 6.3 6.3 6.3 63 6.3 6.3 6.3 6.3 6.3
highway info - - -4 27 27 2.7 13.6 13.6 13.620.1 20.1 20.1
dist selection 135 19.2 7583 21 3.0 195 04 05 24 01 01 1.2
distances - - -4 42 42 42 42 42 42 42 42 4.2

these distances are computed during selection). In adglitie have to compute the highway
information. Nevertheless, the computation of core 1 oakgs about three minutes leading
to a decrease of total preprocessing with regard to all Betetechniques. With regard to
preprocessing time, using avoid and advancedAvoid on thesaof level 2 or 3 does not
seem reasonable while maxCover benefits from switchingglogrnicores.

Another advantage when switching to higher cores is menmamgumption. While about
2.3 GB of RAM are needed for the distances from and to all nede selecting 16 avoid
landmarks on the full graph, 384 MB are sufficent when usirgctbre of level 1. Using the
core-2 (core-3) even further reduces the memory consumfuié4 (17) MB. Note, that we
use 32 bit integers for keeping the distances in the main mgmo

Search SpaceTable 3 gives an overview of the average search space for taD@@ms-t
gueries on the road network of Western Europe and the US.debr lection strategy and
core we generated 10 different sets of 16 landmarks. We trép@average, minimum and
maximum of the average search space.

We see that for distances the quality of landmarks is almmaktpendent of the chosen
level of the hierarchy. Only when switching from level 2 to & wbserve a mild increase
of the search space when using advancedAvoid landmarksevowor travel times on the
European network an interesting phenomenon is that avasdogdter when switching from
the whole graph to core 1 but gets worse and worse with higivetd on which landmarks

Table 3. Overview of the average number of nodes settled by the AL@rétgnm for 1 000 random queries on
the road networks of Western Europe and the US for travektiamel—in parentheses—distances. The figures
are based on 10 different sets of landmarks.

Europe USA
landmarks average min max average min max
avoid 93520 (2535522720 (2416091103929 (264822)220333 (308823177826 (261037276709 (345416)

adv.av.
maxCov

86340 (256511
75220 (230110

Y2004 (218335
Y1061 (212641

) 95663 (283911
) 77556 (254339

210703 (302521
175359 (2821641

183542 (278157
160635 (25514(

240971 (338930)
186457 (297818)

avoid-cl
adv.av.-cl
maxCov-c

84515 (254596
82423 (252007

175992 (230979

$7895 (224111
Y1084 (226088
Y4640 (209605

) 96775 (279603
) 98963 (275778
) 78007 (257163

218313 (30920(
204800 (306364
177304 (277981

162054 (271834
187410 (263238
157530 (268944

$79510 (346570)
P47013 (367764)
190396 (288383)

avoid-c2
adv.av.-c2
maxCov-c

89001 (259149
86611 (257963

275379 (230310

Y4980 (242489
Y5450 (218031
Y1551 (211168

) 97764 (277761
) 99107 (275780
) 80815 (250145

206188 (310959
221356 (306553
187644 (281464

170539 (265233
175679 (252837
173851 (254751

33813 (366833)
$50045 (360645)
200721 (309360)

avoid-c3
adv.av.-c3

maxCov-c§

91201 (264821
91163 (275991

72310 (239584

Y6681 (245809
B4116 (263978
58348 (209720

) 99667 (296211
) 99779 (301018

) 76770 (259185

14

237615 (313674
234385 (321324

194707 (283086

193502 (270124
200155 (293913

172334 (257484

$77167 (351791)
266757 (354027)
205618 (307022)

are selected. On the US network, the search space reducesswitehing to core 2 in
combination with avoid landmarks. MaxCover is nearly inglegent of the chosen level on
the European network while on the US network a slight lossuafity can be observed with
higher levels.

There seem to be two counteracting effects here: On highielslef the hierarchy, we
loose information. For example, peripheral nodes that arelidates for good landmarks
are dropped. On the other hand, concentrating on highek éelgees in landmark selection
heuristics could be beneficial since these are edges negdwedry shortest paths.

In general, maxCover outperforms avoid and advancedAegdnding the average qual-
ity of the obtained landmarks. Nevertheless, in most cdsesrtinimum average search
space is nearly the same for all selection strategies wéluare, while some sets of avoid
and advancedAvoid landmarks lead to search spaces 25% higimethe worst maxCover
landmarks. So, the maxCover routine seems to be more rdtarsavoid or advancedAvoid.
Comparing avoid and advancedAvoid we observe just a mildargiment in quality. Thus,
the additional computation time of advancedAvoid is nottivane effort.

Combining the results from Tabs. 2 and 3, another strategiymsgromising: maxCover
landmarks from the core of level 2 or 3 outperform avoid laadks from the full graph and
their computation—including the highway information—dseonly additional 5 minutes
compared to avoid landmarks from the full graph. For thisoea we use such landmarks
for our further experiments.

Efficiency and ApproximatiorTable 4 indicates the efficiency of our implementation by
reporting query times in comparison to the bidirectionalast of DIJKSTRA'S algorithm.
For comparison with approximate HH queries we also pro\néa¢sults for an approximate
ALT algorithm: Stop the query if the sum of the minimum keystle forward and the
backward queue exceed (1 + <) + ps(s) with ¢ = 0.1. This stopping criterion keeps the
error rate below 0%.

Analysing the speedups compared to the bidirectional naoBDIIKSTRA'S algorithm,
we observe a search space reduction for Europe (traveltimgesfactor of abou63.6. This
reduction leads to a speedup factor40f0 concerning query times. For the USA (travel
times), speedup concerning search space and query timeglesthan for Europe. We
observe a factor 088.5 for search space areb.5 for query times. The reason for this
discrepancy is the overhead for computing the potentiaigatso reported in [3, 4, 8].

For the distance metric on the European network we obsem@uetion in search space
of factor 21.8, leading to a speedup factor df.8. The corresponding figures for the US
are28.8 and19.4. Thus, the situation is vice versa to travel times. Hereedpps are better

Table 4. Comparison of the bidirectional variant ofiixSTRA's algorithm, the ALT algorithm, and the ap-
proximate ALT algorithm concerning search space, quergsimnd error rate. The landmarks are 16 max-
Cover core-3 landmarks. The figures are based on 1 000 randeries|.

Europe USA
metric bi.Dij. ALT approx.ALT| bi.Dij. ALT approx.ALT
#settled nodes [4.68 - 10° 73563 61930r.42 - 10° 192938 182426
time query time [ms] 2707 55.2 458 3808 129.2 116.9
inaccurate queries - - 12.19 - - 8.9%
#settled nodes [5.27 - 10° 241476 21912}8.11-10° 281335 263375
dist query time [ms] 2013 169.2 15009 3437 1771 163.5
inaccurate queries - - 33.79 - - 24.8%

15

on the US network than on the European network. The highexdayps for travel times
are due to the fact that for distances the advantage of td&stdiighways instead of slow
streets is smaller than for travel times. Since the diffeedmetween the slowest and fastest
road category (see Tab. 1) is bigger for Europe, the ALT dlgar performs better on this
network than on the US network when using travel times.

Comparing our results with the ones from [8] we have about b@§ker search spaces
on the US network (travel times). This derives from the faettton the US network with
travel times the quality of maxCover landmarks slightly@ases when switching to higher
cores (see Tab. 3). Nevertheless, our average query tintesimstance are.49 (129 ms
to 322 ms) times faster, although we are using a slower computeea&an for this is a
different overhead factor.While our implementation haswerhead of factot.3, the figures
from [8] suggest an overhead &f

For the travel time metric, approximate queries perforny @@% better on Europe and
10% better on the US than exact ones. The percentage of iseaueries is 12 and 8%,
respectively. For the distance metric, the speedup forcqopiate queries is even less and the
percentage of inaccurate queries is much higher, namelya88 24.8% for the European
and US network, respectively. These high numbers of wroregigs are due to the fact
that for the distance metric there are more possibilitieshairt paths with similar lengths
since the difference between taking fast highways and myiwn slow streets fades. So,
approximation for ALT adds only a small speedup not justifyihe loss of correctness. For
a detailed analysis of the approximation error see Tab. tilFays. 11-14 in Appendix A.

Local Queries. Figure 5 gives an overview of the query times in relation te Bijkstra

rank. For the same analysis of the approximate ALT algorjtbee Fig. 8 in Appendix A.
The results for the distance metric are also located in Agpeh (Figures 9 and 10).

Local Queries ALT (travel time metric)

1000
1000

10

e i
k- - - - I - e

I

100

Query Time [ms]
)19)]
l. R ——

10 100
| |
D
ammo>
-
B o)
F---- I - e==o
i 1 i
H- - - i -
e |
-
I -
-
1

F-=-=---

0.1
0.1

Dijkstra Rank

Fig.5. Comparison of the query times using the Dijkstra rank mettemgl on the road networks of Europe
and the US. The landmarks are chosen from the level-3 cong usaxCover. The results are represented as
box-and-whisker plot [19]: each box spreads from the lowehé upper quartile and contains the median, the
whiskers extend to the minimum and maximum value omittingjens, which are plotted individually.

16

The fluctuations in query time both between different Dijastnks and with fixed Dijk-
stra rank are so big that we had to use a logarithmic scalen gyécal query times vary by
an order of magnitude for large Dijkstra ranks. The slowestriggs for most Dijkstra ranks
are two orders of magnitude slower than the median querystime

An interesting observation is also that for small ranks AgTaister on the network of the
US whereas for ranks higher thatt, queries are faster on the European network. A plausi-
ble explanation seems to be the different geometry of thecmbinents. Queries within the
(pen)insulae of Iberia, Britain, Italy, or Scandinaviaddandmarks in many directions. For
example, a user in Scotland might make the queer experiématequeries in north-south
direction are consistently faster than queries in east-diesction (see Fig. 3). In contrast,
long distance routes often have to go through bottleneckshngimplify search. In the US,
such effects are rare.

5.3 Highway Hierarchiesand A* Search

Default Settings.Unless otherwise stated, we use the following defaultrsgsti After the
level-5 core has been determined, the construction of #aiahy is stopped. A complete
distance table is computed on the level-5 core. For distareteics, we stop at the level-6
core instead. We use 16 maxCover landmarks that have begquubednn the level-3 core.
The approximate query algorithm uses a maximum error ral®f, i.e... = 0.1.

Using a Distance Table and/or Landmark&s described in Section 2, using a distance table
can be seen as adding a very strong sense of goal directertadtcore of the topmost level
has been reached. If the highway query algorithm (withostbaice table) is enhanced by the
ALT algorithm, the goal direction comes into effect mucHhiearStill, the most considerable
pruning effect occurs in the middle of rather long pathsselto the source and the target,
the lower bounds are too weak to prune the search. Thus, ptithisations, distance tables
and ALT, have a quite similar effect on the search spacegusiher of both techniques, in
case of the European network with ttravel time metri¢the search space size is reduced
from 1662 to 916 (see Tab. 5). (Note that a slightly more ¢ffeaeduction of the search
space is obtained when all landmarks are used to compute bmwads instead of selecting

Table 5. Comparison of all variants of the highway query algorithrimgsio optimisation(), a distance table
(DT), ALT, or both techniques. Values in parentheses refapproximatequeries. Note that thdisk space
includes the memory that is needed to store the originalgrap

Europe USA

metric ¢ DT ALT both ¢ DT ALT both
preproc. time [min] 17 19 20 22 23 26 27 28

time total disk space [MB] 886 1273 1326 1714 1129 1574 1743 2188
#settled nodes 1662 916 916 686 (176)1966 1098 1027 787 (162)
query time [ms] 1.16 0.65 0.80 0.55(0.18) 1.18 0.73 0.80 0.60 (0.17)
preproc. time [min] 47 47 50 49 55 57 59 59

dist total disk space [MB] 894 1506 1337 1948 | 1140 1721 1754 2335
#settled nodes 10284 5067 3347 2138 (177706 5477 2784 2021 (169)
query time [ms] 8.21 4.89 3.16 1.95(0.28) 7.10 4.95 2.52 1.74(0.27)
preproc. time [min] 24 27 29 32

unit total disk space [MB] 925 1368 1981 2542
#settled nodes 1714 1249 (709 1665 1072 (187)
query time [ms] 1.18 0.99 (0.60 1.29 0.89 (0.22)

17

only one landmark for each direction, namely to 903 instefa@1®.) When we consider
other aspects like preprocessing time, memory usage, aTg tjne, we can conclude that
the distance table is somewhat superior to the landmarksigtion. Since both techniques
have a similar point of application, a combination of thehvigy query algorithm with both
optimisations gives only a comparatively small improvetmsmpared to using only one
optimisation. In contrast to the exact algorithm, the agpnate variant reduces the search
space size and the query time considerably—e.g., to 19%&¥dr2case of Europe (relative
to using only the distance table optimisation)—, while gudeeing a maximum error of
10% and achieving a total error of 0.056% in our random sammple000 000(s, ¢)-pairs
(refer to Tab. 7). Some results for US subgraphs can be fouiidh. 12 in Appendix A.

Using adistance metricALT gets more effective and beats the distance table opéimi
tion since much better lower bounds are produced: the negeffiect described in Fig. 4 is
weakened. Furthermore, in this case, a combination with bptimisations is worthwhile:
the query time is reduced to 40% in case of Europe (relatiusitog only the distance table
optimisation). While the highway query algorithm enhaneeéth a distance table has 7.5
times slower query times when applied to the European graghhtiae distance metric in-
stead of using the travel time metric, the combination witkhboptimisations reduces this
performance gap to a factor of 3.5—or even 1.4 when the appadg variant is used.

The performance for thenit metricranks somewhere in between. Although computing
shortest paths in road networks based on the unit metricskim of artificial, we observe
a hierarchy in this scenario as well, which explains the ssingly good preprocessing
and query times: when we drive on urban streets, we encoomteh more junctions than
driving on a national road or even a motorway; thus, the nurabmad segments on a path
is somewhat correlated to the road type.

Different Landmark Setsln Tab. 6, we compare different sets of landmarks. Obviqusiy
increase of the number of landmarks improves the query pedoce. However, the rate
of improvement is rather moderate so that using only 16 lar@isand thus, saving some
memory and preprocessing time seems to be a good option. Udlgygof the selected
landmarks is very similar for the two landmark selection moels that we have considered.
Since the preprocessing times are similar as well, we ptesieg the maxCover landmarks
since they are slightly better.

Table6. Comparison of the search spaces (in terms of number ofdettides) of the highway query algorithm
using different landmark sets. For each road network (vwithttavel time metric), the first column contains
the search space size if thE" search isnot used. Values in parentheses refer to the search space §izes o
approximate queries.

Europe USA
#landmarks ‘ 0 16 24 32 0 16 24 32
core-1 avoid L 916 687 (179) 665 (161) 651 (144)1 098 808 (189) 762 (144) 736 (127)
core-3 maxCove 686 (176) 697 (177) 649 (140) 787 (162) 758 (134) 736 (121)

Local Queries.In Fig. 6, we compare the exact and the approxintiitE search in case
of the European network with the travel time metric. (For & network the results are
similar. We refer to Fig. 15 in Appendix A.) In the exact cage, observe a continuous
increase of the query times: since the distance betweereaumd target grows, it takes

18

Local Queries HH* (Europe, travel time metric)

N - N
— o —
O exact oo OTOT
o | @ approx o-g:§°§°@ o
i ngT?:T::O.Q —
— oogoéT;::;:;;::g:é o
E o 7 (@] -|-Qi||:""':I : 1 0 =)
o Cogo 1o oA Lo
£ g 2o g T ipoe [B :H % s
> ° o SEHHH N Hé S
2 o, 88 | i:"H 1
NPT E L AR
[IE :|:I:I:IE : J'_ : ! :O
S - EiB':!::::;iiii-+ ‘N o *Ié 5§ [S
| P! 1 | O : : :
J.J'_@éeeédeo 4_84_ L " M L O Eg

I I I I I I I I I I I I I
211 212 213 214 215 216 217 218 219 220 221 222 223

N
[N
i

Dijkstra Rank

Fig. 6. Comparison of the query times of the exact and the approgifiit* search using the Dijkstra rank methodology.

longer till both search scopes meet. For large Dijkstra satike slope decreases. This can
be explained by the distance table that bridges the gap battie forward and backward
search for long-distance queries very efficiently, no matteether we deal with a long or a
very long path.

Up to a Dijkstra rank oR!®, the approximate variant shows a very similar behaviour—
even though at a somewhat lower level. Then, the query tdaesasgreaching very small
values for very long paths (Dijkstra rank$—224). This is due to the fact that thelative
inaccuracy of the lower bounds, which is crucial for the stopdition of the approximate
algorithm, is less distinct for very long paths: hence, nadsthe time, the lower bounds
are sufficiently strong to stop very early. However, thedangmber and high amplitude of
outliers indicates that sometimes goal direction does rakwell even for approximate
queries.

Approximation Error. Figure 7 shows the actual distribution of the approximagmor for
a random sample in the European network with the travel tira&io grouped by Dijkstra
rank. (For the European network with the distance metric thedUS network with both
metrics, see Figs. 16—18 in Appendix A.) For paths up to a matddength (Dijkstra rank
216), at least 99% of all queries in the random sample returnextanrate result. Only very
few queries approach the guaranteed maximum error rate %f Eor longer paths, still
more than 94% of the queries give the correct result, and 9@’ of the queries find
paths that are at most 2% longer than the shortest path. Théhtat we get more errors
for longer paths corresponds to the running times depicteeid. 6: in the case of large
Dijkstra ranks, we usually stop the search quite early, twimicreases the likelihood of an
inaccuracy.

While the approximate variant of the ALT algorithm givesyal small speedup (com-
pare Fig. 5 with Fig. 8 in Appendix A) and produces a considieramount of inaccurate
results (in particular for short paths, see Figs. 11 andth®)approximatélH" algorithm

19

Approximation Error HH* (Europe, travel time metric)

o o
o — O
- i
(o . O
(o)) (o)
o _| .
(o] (o]
% B up to 10% longer
2~ O up to 8% longer ~
g o B up to 6% longer ©
o
K E up to 4% longer
(=] 0, ©
© B up to 2% longer - 8
@ accurate
n _| . WO
(o)) [«
< L <
o | | | | | | | | o
17 18 19 20 21 22 23 24

212 18 pl4 9IS HI6 HIT 58 I8 20 2l 92 B 5

Dijkstra Rank

Fig. 7. Actual distribution of the approximation error for a randsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis start94f, i.e., at least 94% of all queries returned an
accurate result.

is much faster than the exact version (in particular for Ipaghs) and produces a compara-
tively small amount of inaccurate results. This differerscamainly due to the distance table,
which allows a fast determination of upper bounds—and timusiany cases early aborts—
and provides accurate long-distance subpaths, i.e., figelting that can go wrong is that
the search processes in the local area around source aet dargot find the right core
entrance points.

In Tab. 7, we compared the effect of different maximum eredesc. We obtained the
expected result that a larger maximum error rate reduceseireh space size considerably.
Furthermore, we had a look at the actual error that occurarimamdom sample: we divided
the sum of all path lengths that were obtained by the appratarmlgorithm by the sum of the
shortest path lengths. We find that the resulting total asgery small, e.g., only 0.056%
in case of the European network with the travel time metriemwive allow a maximum
error rate of 10%. Similar to the results in Section 5.2, weenbe that the total error and
the percentage of inaccurate queries (see Figs. 16 andd &) wh higher when using the
distance metric instead of the travel time metric.

Table 7. Comparison of different maximum error ratesBy the total error, we give the sum of the path
lengths obtained by the approximate algorithm divided leystim of the shortest path lengths. Note that these
values are given in percent. This table is based on 1 000 G@®na(s, ¢)-pairs (instead of the usual 10 000
pairs).

Europe USA

metric e [%] 0 1 2 5 10 20 0 1 2 5 10 20
#settled nodes 685 612 523 319 177 1083 784 632 516 307 162 86
total error [%] 0 0.0002 0.0015 0.018 0.056 0.112 0 0.0013 0.0073 0.034 0.082 0.144
#settled nodes 2131 1302 843 333 184 14021 1101 672 277 169 134
total error [%] 0 0.0112 0.0383 0.172 0.329 0.526 0 0.0108 0.0441 0.132 0.193 0.240

time

dist

20

Complete Description of the Shortest Patho far, we have reported only the times needed
to compute the shortest patlistancebetween two nodes. Now, we determine a complete
description of the shortest path. In Tab. 8 we give the aalusii preprocessing time and the
additional disk space for the unpacking data structureshBtmore, we report the additional
time that is needed to determine a complete descriptioneo§hiortest path and to travetse

it summing up the weights of all edges as a sanity check—asspiimat the distance query
has already been performed. That means that the total @/gnag to determine a shortest
path is the time given in Tab. 8 plus the query time given irviones tables. We can conclude
that even Variant 3 uses comparatively little preprocesiime and space. With Variant 3,
the time for outputting the path remains considerably sendlian the query time itself and
a factor 3-5 smaller than using Variant 2. The USA graph @afibre than the European
graph since it has paths with considerably larger hop copethiaps due to a larger number
of degree two nodes in the input. Note that due to cache sfféoe time for outputting
the path using preprocessed shortcuts is likely to be ceradtly smaller than the time for
traversing the shortest path in the original graph.

Table 8. Additional preprocessing time, additional disk space amery time that is needed to determine a
complete description of the shortest path and to traversenitming up the weights of all edges—assuming
that the query to determine its lengths has already beeorpsefl. Moreover, the average number of hops—
i.e., the average path length in terms of number of nodesivéngThese figures refer to experiments on the
graphs with the travel time metric. Note that the experiméoit Variant 1 have been performed without using
a distance table for the topmost level.

preproc. space query #hopgreproc. space query #hops
[s] [MB] [ms] (avg.) [s] [MB] [ms] (avg.)

Europe F USA

Variant 1 0 0 16.70 137 0 0 40.64 4537
Variant 2 71 112 0.45 137 71 134 1.32 4537
Variant 3 75 180 0.17 137 75 200 0.27 4537

6 Discussion

We have learned a few things about landmark(ALT) that are interesting independently
of highway hierarchies. We have explained why the lower lbiguprovided by ALT are
often quite weak and why there are very high fluctuations iarguperformance. There
are also considerable differences between Western Euraptha US. In Europe, we have
larger execution times for local queries than in the US whereasfag fange (average case)
queries, times aremaller. Executing landmark selection on a graph where sparse sphgr
have been contracted is profitable in terms of preprocedsimgeven if we do not want
highway hierarchies. Similarly, storing distances to laagks only on this contracted graph
considerably reduces the space overhead of ALT.

For highway hierarchies we have learned that they can aledlédhe case of travel
distances. Compared to the case of travel times, space roptisn is roughly the same
whereas preprocessing time and query time increase by faicabout 2—3.5. It is to be
expected that any other cost metric that represents somgroarise of travel time, distance,
fuel consumption and tolls will have performance somewlétkin this range. Highway

% Note that we dmot traverse the path in the original graph, but we directly sbarassembled description of the path.

21

hierarchies can be augmented to output shortest paths nmeablow the time needed for
computing the distances.

There is a complex interplay between highway hierarchiesstha optimisations of dis-
tance tables and ALT. For exact queries using the travel timatic, distance tables are a
better investment into preprocessing time and space than®@he incompatibility between
highway hierarchies and ALT is that the search cannot bepstbpvhen search frontiers
meet. For approximate queries or for the distance mettithiae techniques work together
very well yielding a speedup around four over highway hiengs alone: Highway hier-
archies save space and time for landmark preprocessingndestables obviate search in
higher levels and allow simpler and faster ALT search withyveffective goal direction.
ALT provides good pruning opportunities for the distancenoend an excellent sense of
goal direction for approximate queries yielding high gtyatoutes most of the time while
never computing very bad routes.

An interesting route of future research is to consider a dgoatlon of highway hier-
archies with geometric containers or edge flags [10-12]hWay hierarchies might har-
monise better with these methods than with ALT because ainl highway hierarchies
they are based on truncating search at certain edges. Ehalsoihope that their high pre-
processing costs might be reduced by exploiting the highvienarchy.

Very recentlytransit node routingd TNR) and related approaches [20, 21] have acceler-
ated shortest path queries by another two orders of magniRmughly, TNR precomputes
shortest path distances &ocess pointg a transit node séf’ (e.g., the nodes at the high-
est level of the highway hierarchy). During a query betwesufficiently distant” nodes, a
distance table fof” can be used to bridge the gap between the access points oéssna
target. However, TNR needs considerably more preproagssite than the approach de-
scribed in this paper. Furthermore, the currently best@mgntation of TNR uses highway
hierarchies for preprocessing and local queries. It igylitgat also landmarks might turn out
to be useful in future versions of TNR. On the one hand, lanswield lower bounds that
can be used fdocality filtersneeded in TNR. On the other hand, the precomputed distances
to access points could be used as landmark information gsdipg up local search.

Acknowledgements

We would like to thank Timo Bingmann for work on visualisatitwols.

References

1. Dijkstra, E.W.: A note on two problems in connexion witlaghs. Numerische Mathemati(1959) 269-271

2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basisthfa heuristic determination of minimum cost paths. |IEEE
Transactions on System Science and Cyberné{s(1968) 100-107

3. Goldberg, A.V., Harrelson, C.: Computing the shorteghpd* meets graph theory. In: 16th ACM-SIAM Symposium
on Discrete Algorithms. (2005) 156-165

4. Goldberg, A.V., Werneck, R.F.: An efficient external meynshortest path algorithm. In: Workshop on Algorithm
Engineering and Experimentation. (2005) 26—40

5. Sanders, P., Schultes, D.: Highway hierarchies hastatt skortest path queries. In: 13th European Symposium on
Algorithms. Volume 3669 of LNCS., Springer (2005) 568-579

6. Sanders, P., Schultes, D.: Engineering highway hiei@schn: 14th European Symposium on Algorithms. Volume
4168 of LNCS., Springer (2006) 804-816

7. Gutman, R.: Reach-based routing: A new approach to siquégh algorithms optimized for road networks. In: 6th
Workshop on Algorithm Engineering and Experiments. (2020)-111

22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Goldberg, A., Kaplan, H., Werneck, R.: Reach for. Efficient point-to-point shortest path algorithms. In: kkshop

on Algorithm Engineering & Experiments, Miami (2006) 12431

Maue, J., Sanders, P., Matijevic, D.: Goal directed glsbpath queries using

Precomputed (Lister Ostances. In: 5th Workshop on Experimental Algorithms (WENumber 4007 in LNCS,
Springer (2006) 316—-328

Wagner, D., Willhalm, T.: Geometric speed-up technigiee finding shortest paths in large sparse graphs. In: 11th
European Symposium on Algorithms. Volume 2832 of LNCS. jigpmr (2003) 776—-787

Mohring, R.H., Schilling, H., Schiitz, B., Wagner, Willhalm, T.: Partitioning graphs to speed up Dijkstra'ga
rithm. In: 4th International Workshop on Efficient and Exipsgntal Algorithms. (2005) 189-202

Lauther, U.: An extremely fast, exact algorithm for fingishortest paths in static networks with geographical back
ground. In: Geoinformation und Mobilitat — von der Forsogwur praktischen Anwendung. Volume 22., IfGl prints,
Institut fir Geoinformatik, Miinster (2004) 219-230

Ikeda, T., Hsu, M., Imai, H., Nishimura, S., Shimoura, Hashimoto, T., Tenmoku, K., Mitoh, K.: A fast algorithm
for finding better routes by Al search techniques. In: VahMavigation and Information Systems Conference. IEEE.
(1994)

Sedgewick, R., Vitter, J.S.: Shortest paths in Euchidgzace. Algorithmicd (1986) 31-48

Willhalm, T.: Engineering Shortest Path and Layout Aidpns for Large Graphs. PhD thesis, Universitat Karlgruh
(TH), Fakultat fur Informatik (2005)

Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better lamaks within reach. In: 9th DIMACS Implementation Chal-
lenge [18]. (2006)

U.S. Census Bureau, Washington, DC: UA Census 2000 TIGE®Files. htt p: / / www. census. gov/ geo/
www/ ti ger/tigerual/uatgr2k. htm (2002)

9th DIMACS Implementation Challenge: Shortest Patttst. p: / / ww. di s. uni romal. it/ ~chal | enge9/
(2006)

R Development Core Team: R: A Language and EnvironmentSfatistical Computing. ht t p: / / wwww.
r-project. org (2004)

Muller, K.: Design and implementation of an efficienéetgirchical speed-up technique for computation of exact
shortest paths in graphs. Master’s thesis, Universtadskare (2006) supervised by D. Delling, M. Holzer, F. Schulz
and D. Wagner.

Bast, H., Funke, S., Matijevic, D., Sanders, P., Schulle: In transit to constant time shortest-path querie®aur
networks. In: Workshop on Algorithm Engineering and Expents. (2007)

23

A Further Experiments

Table 9. DIMACS Challenge [18] benchmarks for US (sub)graphs (quieng [ms]).

metric

graph| time dist
NY 29.6 28.5
BAY 34.7 33.3
COL 515 49.0
FLA | 134.8 120.5
NW 161.1 146.1
NE 225.4 197.2
CAL| 291.1 235.4
LKS | 461.3 366.1
E 681.8 536.4
W |1211.2 988.2
CTR|4485.7 3708.1
USA | 5355.6 4509.1

Table 10. Overview of the preprocessing for different selectiontsgis on the US network. All figures are

given in minutes of computation time. Generating 16 max€tvedmarks on the whole graph requires more
than 4 GB RAM. Therefore, these landmarks were generated éiviD Opteron Processor 252 clocked at
2.6 GHz with 16 GB main memory.

full graph core-1 core-2 core-3
metric preproc. [minjfvoid adv.av. maxCgeavoid adv.av. maxCaavoid. adv.av. maxCaavoid adv.av. maxCov
highway info - - - 34 34 3.4 149 149 149185 185 18.5
time selection 20.5 305 105 3.1 45 284 05 07 56 0.1 0.2 1.2
distances - - —4 71 71 71 71 7.1 71 71 7.1 7.1
highway info - - -4 31 31 31 174 174 17.426.3 26.3 26.3
dist selection 18.3 26.4 97.2 29 4.2 282 06 0.9 58 02 0.2 1.5
distances - - -4 58 58 58 58 538 58 58 58 5.8

24

Table 11. Comparison of the exact and approximate ALT algorithm. Tr&inarks are taken from the full
graph. The figures are based on 1000 random queries on 1fediffeets of 16 landmarks.

Europe USA
#settled nodeg inaccurate querigstsettled nodeginaccurate queries
metric exact appro¥. min —max exact approx. min —max

avoid 93520 81582 9.8% —11.9% (220333 206 165 7.4% —10.1%
time adv.av. 86340 74706 9.3% —12.6% |210703 194920 7.6% — 9.6%
maxCove[75220 6311 10.7% —11.7% [175359 161230 7.6% — 9.6%
avoid 253552 22561831.5% — 38.4% |308 823 289 701 24.8% — 29.9%
dist advav. |256511 227 77930.9% — 38.0% |302 521 282 410 24.3% — 29.3%
maxCovef230 110 203 564 31.3% — 34.9% (282 162 265 091 27.3% — 22.3%

Local Queries approximate ALT (travel times metric)

Query Time [ms]

o U o
o _| o . O
a S|
O Europe ° i
5 B USA i i 5
o — O
- Q ! i
| iﬁ o !
|I
o i" ! o
-] i [l : : I~
a 1 [
o Oﬁﬁ. S I I|:|III:::JI-
| - 1 |,||:':|J.|
- i | : T R R + - -
il : I| 'II:II:"'I JI. -+
EIEI-
[T T T S B
o | BgTHIT il iii .
o

::::|J-J'J'

[T T

£

T T T T T T T T T T T T T T
211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank

Fig. 8. Comparison of the query times on the road network of Westerngie and the USA using the approx-
imate ALT algorithm. The landmarks are chosen from the &using maxCover.

Table 12. Performance of HH (using a distance table and landmarks) for US subgraphstratiel time
metric. For small graphs, we deviate from the default sgétithe landmark selection takes place in the core
of the level given in column 2, the construction of the higviéerarchy is stopped at the core of the level
given in column 3.

landm. selection dist. tahjle preproc. total disk #settled query
graph core level core levetime [min] space [MB] nodes time [ms]
NY 2 3 0:55 140 334 0.22
BAY 2 3 0:24 40 329 0.20
COoL 2 3 0:29 49 327 0.19
FLA 3 3 1:08 115 354 0.22
NW 3 4 1:06 87 509 0.33
NE 3 4 2:14 169 526 0.36
CAL 3 4 2:23 176 519 0.35
LKS 3 4 4:25 398 543 0.39
E 3 5 4:07 255 650 0.46
w 3 5 7:22 453 695 0.50
CTR 3 5 23:12 1132 762 0.73

25

Local Queries ALT (distance metric)

Query Time [ms]

o o
o _| . O
2 a
O Europe
o B USA i o
S] - S
'
i I oy
o _| 2_\ II|.| | o
— e -.,.':- —
! [T S |
= | I||||||.I|J-
(] | ! P T e 8
8 ' g lln""' L
1 il gombs o - -
' | ||III|IIJ-J_J-
1 H. I:||:|IJ.J_J.
S E.B.':::-ILN* -
- | -
o - |'|:J'_J.|J'J- o
SR
+ .

T T T T T T T T T T T T T T
211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank

Fig. 9. Comparison of the query times on the road network of Westerpfie and the USA using the ALT al-
gorithm. The landmarks are chosen from the core-3 using rmaxC

Local Queries approximate ALT (distance metric)

O Europe

1000
|
L)
L)
[___ o)
DD GO
D
- GEREDO
L]
- @
- @O
I
1000

Query Time [ms]

° B USA iii . o
S [l - o
— il [II —
: NHE L Lie
— i N II |:I||| —
° li 'HlHI':i::::i:i**
o i'i HH. gees it -
H_EB.B.:I:::JI.JI-"J' | -
o |||:J'_:|J'4- o

211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank

Fig. 10. Comparison of the query times on the road network of Westemofie and the USA using the ap-
proximate ALT algorithm. The landmarks are chosen from the- using maxCover.

26

Approximation Error ALT (Europe, travel time metric)

o o
o — O
— —l
up to 10% longer

B up to 8% longer Y

g up to 6% longer

g up to 4% longer

Q up to 2% longer

5] accurate

o
o _|)
()] [«
n _J L. WO
o | | | | | | | | ®

| | | | | |
211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank

Fig. 11. Actual distribution of the approximation error for a randsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis start8%, i.e., at least 50% of all queries returned an
accurate result.

Approximation Error ALT (Europe, distance metric)

o o
o — O
- —
o _| L. O
© up to 10% longer ©
up to 8% longer
o o up to 6% longer o
2 @ 7 up to 4% longer - ®
‘a:')' up to 2% longer
3] accurate
] o _)
o N~ N~
o _])
() ©
o _| L. O
n n

Dijkstra Rank

Fig. 12. Actual distribution of the approximation error for a randgample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis startSQfo, i.e., at least 50% of all queries returned an
accurate result.

27

Approximation Error ALT (USA, travel time metric)

o o
o — O
— —l
B up to 10% longer
0 | O up to 8% longer |
@ B up to 6% longer @
© B up to 4% longer
= B up to 2% longer
c o _| E accurate . o
() () (o]
o
()
o
0 _| .
[ee) [¢e)
o _| L. O©
o | | | | | | | ®

| | | | |
oIl 912 513 5l4 515 516 H17 518 519 520 521 522

Dijkstra Rank
Fig. 13. Actual distribution of the approximation error for a randsample, grouped by Dijkstra rank. Note

that, in order to increase readability, the y-axis start8Qf, i.e., at least 80% of all queries returned an
accurate result.

Approximation Error ALT (USA, distance metric)

up to 10% longer
up to 8% longer
up to 6% longer
up to 4% longer
up to 2% longer
accurate

| | [
(NN RuN EERc

Percentage
60 65 70 75 80 85 90 95 100
l
60 65 70 75 80 85 90 95 100

Dijkstra Rank

Fig. 14. Actual distribution of the approximation error for a randgample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis start6Qf, i.e., at least 60% of all queries returned an
accurate result.

28

Local Queries HH* (USA, travel time metric)

Query Time [ms]

N L N
- i
O exact o %, 0 o
o B approx| o o O ETgTe:T*T o
- I | . [| —
[e} 8 8 g T | [' : (- \
© _| 8 © o E ' [: : : : : [: : : |
8 EO A R °
o) T [: . . : . [:
o | °L g v o e M0 [Y o
o o sg - [(. ! : H' : | o
U g g i e . L = H ; H - | X ' . | <
o ! X : ! ' | ! 1 | ! o
. o ! H H \ , | : | | :
-t R EHEREE |
o I ! ! o [! L L L o
|. Jl_ N J'_ \ J'_ : Lo L - [¢] -
1 1 1 1 1 1 1 1 1 1 1 1 1 1
211 212 213 214 215 216 217 218 219 220 221 222 223 224
Dijkstra Rank
Fig. 15. Comparison of the query times of the exact and the approeibiat™ search.
Approximation Error HH* (Europe, distance metric)
o o
o — O
— —
0 _| . W
(o] (o]
o _])
[e)) [«
()
g
E 8 up to 10% longer - 8B
s up to 8% longer
o o up to 6% longer o
© 7 up to 4% longer - ®
up to 2% longer
0] accurate - R
o _| L. O
~ ~

Dijkstra Rank

Fig. 16. Actual distribution of the approximation error for a randsample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis start3Qf#, i.e., at least 70% of all queries returned an
accurate result.

29

Approximation Error HH* (USA, travel time metric)

o o
o — O
— —l
o _| .
[o)] (o]
O _] . ©
[e)) [«
()
(o)) — —
8
c < | <
8 [o)] (o]
5 _ B up to 10% longer L
P O up to 8% longer s
o B up to 6% longer ©
- B up to 4% longer ~
o 0, o
S - B up to 2% longer - g
| O accurate B
0 _| L. ©
[ee) [ee)

| | | |
oIl 912 513 5l4 515 516 517

Dijkstra Rank
Fig. 17. Actual distribution of the approximation error for a randsample, grouped by Dijkstra rank. Note

that, in order to increase readability, the y-axis start88%, i.e., at least 88% of all queries returned an
accurate result.

Approximation Error HH* (USA, distance metric)

Percentage

o o
o — O
- i
n _| . W
[e)) [«
o _| L. O
(o] (o]
up to 10% longer
0 | up to 8% longer L w
®© up to 6% longer ©
up to 4% longer
o _| up to 2% longer o
@® accurate o
o0 _| L. W
~ ~

Dijkstra Rank

Fig. 18. Actual distribution of the approximation error for a randgample, grouped by Dijkstra rank. Note
that, in order to increase readability, the y-axis start35, i.e., at least 75% of all queries returned an
accurate result.

30

