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Abstract. When you drive to somewhere ‘far away’, you will leave your current location via one of only a
few ‘important’ traffic junctions. Starting from this informal observation, we develop a generic algorithmic
approach—transit node routing—that allows us to reduce quickest-path queries in road networks to a small
number of table look-ups. We implement this basic approach using highway hierarchies. For the road
maps of Western Europe and the United States, our best query times improve over the best previously
published figures by two orders of magnitude. This is more than one million times faster than the best
known algorithm for general networks. We also explain how tocompute complete descriptions of shortest
paths (and not only their lengths) very efficiently.

1 Introduction

Computing an optimal route in a road network between specified source and target nodes
(i.e., places/intersections) is one of the showpieces of real-world applications of algorith-
mics. Besides the omnipresent application of car navigation systems and internet route plan-
ners, even faster route planning is needed for massive traffic simulation and optimisation in
logistics systems. Beyond mere computational efficiency, the methods presented here also
give quantitative insight into the structure of road networks and justify the way humans do
route planning.

The classical algorithm for route planning—Dijkstra’s algorithm [1]—iteratively visits
all nodes that are closer to the source node than the target node before reaching the target.
On road networks for a subcontinent like Western Europe or the USA, this takes about
ten seconds on a state-of-the-art workstation. Since this is too slow for many applications,
commercial systems use heuristics that do not guarantee optimal routes. Therefore, there has
been considerable interest in speedup techniques for computing optimalroutes.

Recently, Bast, Funke and Matijevic [2] have introduced a notion we call transit node
routing which is based on the following two key observations: First,there is a relatively
small set oftransit nodes, about 10 000 for the US road network, with the property that for
every pair of nodes that are ‘not too close’ to each other, theshortest path between them
passes throughat least oneof these transit nodes. Second, for every node, the set of transit
nodes encountered first when going far—we call theseaccess nodes—is small (about 10).
They have implemented this idea using a uniform grid to define‘sufficiently far away’. This
way about 98% of all queries can be answered using a few table look-ups. However, since
the remaining 2% of the local queries are orders of magnitudeslower, they are not able to
report query times that outperform the fastest existing implementation, which uses highway
hierarchies [3]. Furthermore, preprocessing time, thoughsubquadratic, is very high.

Independently, Müller et al. [4] have developed a similar approach based on vertex sepa-
rators. This approach uses several CPU-days of preprocessing and more space than fits on a
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Fig. 1. Finding the optimal travel time between two points somewhere between Saarbrücken and Karlsruhe amounts to
retrieving the 2×4 access nodes(diamonds), performing 16 table look-ups between all pairsof access nodes, and checking
that the two disks defining thelocality filter do not overlap. The figure draws the levels of the highway hierarchy using
coloursgrey, red, blue, andgreenfor levels0–1, 2, 3, and4, respectively.Transit nodesare drawn as small orange squares.

single hard disk. After all data needed for a query is presentin the processor cache, a query
still takes about 50µs.

We present the first complete implementation of transit noderouting. We first develop
transit node routing into a generic technique in Section 2 that can be instantiated in many
ways. In particular, we add furtherlayersto transit node routing that allow to handle local
queries as well. We instantiate this approach for highway hierarchies [5, 3] in Section 3.
Figure 1 gives an example. Experiments reported in Section 4give average query times of
about 5µs and query times around 20µs for slowest category of queries. Our preprocessing
times are slower than for highway hierarchies alone but faster than in [2]. Our main focus
is on computingquickest patheven if we use the termshort. However, we also give some
results on computing travel distances.

Related Work

Bidirectional Search.A classical technique isbidirectional searchwhich simultaneously
searches forward froms and backwards fromt until the search frontiers meet. Many more
advanced speedup techniques (including ours) use bidirectional search as an ingredient.

Separators.Perhaps the most well known property of road networks is thatthey are al-
most planar, i.e, techniques developed for planar graphs will often also work for road net-
works. Queries accurate within a factor(1 + ǫ) can be answered in near constant time using
O((n log n)/ǫ) space and preprocessing time [6]. UsingO(n log3 n) space and preprocess-
ing time, query timeO(

√
n log n) can be achieved [7] for directed planar graphs without

negative cycles. A previous practical approach based on separators is theseparator based
multi-level method[8]. The idea is to partition the graph into small componentsby remov-
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ing a (hopefully small) set of separator nodes. These separator nodes together with edges
representing precomputed paths between them constitute the next level of the graph.

Using more space and preprocessing time, separators can be used for transit node rout-
ing. The separator nodes become transit nodes and the accessnodes are the border nodes
of the component ofv. Local queries are those within a single component. Anotherlayer
of transit nodes can be added by recursively finding separators of each component. Müller
et al. [4] have essentially developed this approach (using different terminology). An inter-
esting difference to generic transit node routing is that the required information for routing
between any pair of components is arranged together. This takes additional space but has
the advantage that the information can be accessed more cache efficiently (it also allows
subsequent space optimisations). Although separators of road networks have much better
properties than the worst case bounds for planar graphs would suggest, separator based tran-
sit node routing needs many more access nodes than our schemes (≈ 80 rather than≈ 10
per node for Western Europe). This leads to higher space consumption, preprocessing time,
and query time. The main reason for the difference in number of access nodes is that the
separator approach does not take the ‘sufficiently far away’criterion into account that is so
important for reducing the number of access nodes in our scheme.

Highway Hierarchies.Commercial systems use information on road categories to speed
up search. ‘Sufficiently far away’ from source and target, only ‘important’ roads are used.
This requires manual tuning of the data and a delicate tradeoff between computation speed
and suboptimality of the computed routes. In previous papers [5, 3] we introduced the idea
to automaticallycomputehighway hierarchiesthat yieldoptimal routesuncompromisingly
quickly. The basic idea is to define a neighbourhood for each node to consist of itsH
closest neighbours. Now an edge(u, v) is a highway edge if there is some shortest path
〈s, . . . , u, v, . . . t〉 such that neitheru is in the neighbourhood oft norv is in the neighbour-
hood ofs. This defines the first level of the highway hierarchy. After contracting the network
to remove low degree nodes, the same procedure (identifyingthe highway network at the
next level followed by contraction) is applied recursively. We obtain a hierarchy. The query
algorithm is bidirectional Dijkstra with restrictions on relaxing certain edges. Roughly, far
away from source or target, only high level edges need to be considered. Highway hierar-
chies are successful (several thousand times faster than Dijkstra) because of the property of
real world road networks that forconstant neighbourhood sizeH, the levels of the hierar-
chyshrink geometrically. One can view this as aself-similarity—each level of the hierarchy
looks similar to the original network, just a constant factor smaller. Under certain (somewhat
optimistic) assumptions, this self-similarity yieldslogarithmicquery time in contrast to the
superlinear query time of Dijkstra’s algorithm.

Reach Based Routing.Comparable effects can be achieved with the closely relatedtech-
nique ofreach based routing[9, 10].

Distance Tables.In [3] transit node routing isalmostanticipated. Precomputed all-to-all
distances on some sufficiently high level—sayK— of the highway hierarchy are used to
terminate the local searches when they ascended far enough in the hierarchy. The main
differences to transit node routing is that access points are computed online and that only
distances within levelK of the highway hierarchy (rather than distances in the underlying
graph) are precomputed. This leads to much larger sets of access points (≈ 55) that made
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precomputing them appear much less attractive as it actually is. It was also not addressed,
how to decidewhenthe distance given by the distance table is the actual shortest path dis-
tance.

Goal Direction. Another interesting property of road networks is that they allow effective
goal directed search usingA∗ search[11]: lower bounds define a vertex potential that directs
search towards the target. This approach was recently shownto be very effective if lower
bounds are computed using precomputed shortest path distances to a carefully selected set of
about 20Landmarknodes [12, 13] using theTriangle inequality (ALT). In combination with
reach based routing, this is one of the fastest known speeduptechniques [10]. An interesting
observation is that in transit node routing, the access nodes could be used as landmarks (with
aid of the distance tables). The resulting lower bound couldbe used for distinguishing local
and global queries or for guiding local search.

Geometry.Finally, a tempting property of road networks is that nodes have a geographic
position. Even if this information is not available, equally useful coordinates can be synthe-
sised [14]. Interestingly, so far, successful geometric speedup techniques have always been
beaten by related non-geometric techniques (e.g. [11] by [12, 13] or [15] by [16, 17]). We
initially thought that the highway hierarchy approach outperforming the grid based approach
to transit node routing would turn out to be another instanceof this phenomenon. However,
currently it looks like the highway hierarchy approach needs a geometric locality filter for
good performance.

2 Transit Node Routing

To simplify notation we will present the approach for undirected graphs. However, the
method is easily generalised to directed graphs and our highway hierarchy implementa-
tion already handles directed graphs. Consider any setT ⊆ V of transit nodes, anaccess
mappingA : V → 2T , and alocality filter L : V × V → {true, false}. We require that
¬L(s, t) implies that the shortest path distance is

d(s, t) = min {d(s, u) + d(u, v) + d(v, t) : u ∈ A(s), v ∈ A(t)} . (1)

In principle, we can pick any set of transit nodes, any accessmapping, and any locality filter
fulfilling Equation (1) to obtain a transit node query algorithm:
Assume we have precomputed all distances between nodes inT .
If ¬L(s, t) then computed(s, t) using Equation (1)
Else, use any other routing algorithm.

Of course, we want a good choice of(T , A, L). T should be small but allow many global
queries,L should efficiently identify as many of these global query pairs as possible, and we
should be able to store and evaluateA efficiently.

We can apply asecond layerof generalised transit node routingto the remaining local
queries (that may dominate some real world applications). We have a node setT2 ⊃ T , an
access mappingA2 : V → 2T2, and a locality filterL2 such that¬L2(s, t) implies that the
shortest path distance is defined by Equation 1 or by

d(s, t) = min {d(s, u) + d(u, v) + d(v, t) : u ∈ A2(s), v ∈ A2(t)} . (2)
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In order to be able to evaluate Equation 2 efficiently we need to precompute the local con-
nections from{d(u, v) : u, v ∈ T2 ∧ L(u, v)} which cannot be obtained using Equation 1.

In an analogous way we can add further layers.

General Techniques

We now describe techniques that can be used together with anyset of transit nodes. The
more specific techniques presented in Section 3 will refine and in some cases replace these
general techniques.

Computing Access Nodes: Backward Approach.Start a Dijkstra search from each transit
nodev ∈ T . Run it until all paths leading to nodes in the priority queuepass over another
nodew ∈ T . Recordv as an access node for any nodeu on a shortest path fromv that does
not lead over another node inT . Record an edge(v, w) with weight d(v, w) for a transit
graphG[T ] = (T , ET ). When this local search has been performed from all transit nodes,
we have found all access nodes and the distance table can be computed using an all-pairs
shortest path computation inG[T ].

Layer 2 Informationis computed similarly to the top level information except that a search
on the transit graphG[T2] can be stopped when all paths in the priority queue pass over a
top level transit nodew ∈ T . Level 2 distances from each nodev ∈ T2 can be stored space
efficiently in a static hash table. We only need to store distances that actually improve on the
distances obtained going via the top levelT .

Computing Access Nodes: Forward Approach.Start a Dijkstra search from each nodeu.
Stop when all paths in the shortest path tree are ‘covered’ bytransit nodes. Take these transit
nodes as access points ofu. Applied naively, this approach is rather inefficient. However,
we can use two tricks to make it efficient. First, during the search we do not relax the edges
leaving transit nodes. This leads to the computation of a superset of the access points. For-
tunately, this set can be easily reduced if the distances between all transit nodes are already
known: if an access pointv′ can be reached fromu via another access pointv on a short-
est path, we can discardv′. Second, we can only determine the access point setsA(v) for
all nodesv ∈ T2 and the setsA2(u) for all nodesu ∈ V . Then, for any nodeu, A(u)
can be computed as

⋃
v∈A2(u) A(v). Again, we can use the reduction technique to remove

unnecessary elements from the set union.

Locality Filters. There seem to be two basic approaches to transit node routing. One that
starts with a locality filterL and then has to find a good set of transit nodesT for which
L works (e.g., [2]). The other approach starts withT and then has to find a locality fil-
ter that can be efficiently evaluated and detects as accurately as possible whether local
search is needed (e.g., Section 3). One approach that we found very effective is to use
the information gained when computing the distance table for layer i + 1 to define a lo-
cality filter for layer i. For example, we can compute the radiusri(u) of a circle around
every nodeu ∈ Ti+1 that contains for each entryd(u, v) in the layer-(i + 1) table the
meeting point of a bidirectional search betweenu and v. We can use this information
in several ways. We can (pre)compute conservative circle radii for arbitrary nodesv as
ri(v) := max {||v − u||2 + ri(u) : u ∈ Ai+1(v)}. Note that even if we are not able to store
the information gathered during a precomputation at layeri + 1, it might still make sense to
run it in order to gather the more compact locality information.
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Space Efficient Storage of Access Nodes.If all shortest paths from a nodev to its access
nodesA(v) have to go over nodes from a setM , we can exploit thatA(v) ⊆ A(M) :=⋃

u∈M
A(u). Moreover, if the nodes inM are ‘close’ tov, we can expect thatA(M) is

not too much bigger thanA(v). Therefore, as long as we can efficiently findM , it suffices
to store access node information with a subset of the nodes. This subset might beT2 or a
separator partitioning the graph into small pieces.

Outputting Shortest Paths(rather than only distances). First note that in a graph with
bounded degree (e.g. a road network) and with a (near) constant time distance oracle, we
can output a shortest path froms to t in (near) constant time per edge: Look for an edge
(s, u) such thatw(s, u) + d(u, t) = d(s, t), output(s, u). Continue by looking for a shortest
path fromu to t. Repeat untilt is reached. We can speed up this process by two measures.
Suppose the shortest path uses the access nodesx ∈ A(s) andy ∈ A(t). First, while re-
constructing the path froms to x (and fromy to t) we can use this access node information
to eliminate all search for the right access nodes and perform only a single distance table
look-up. Second, reconstructing the path fromx to y can work on the transit graphG[T ]
rather than on the original graph. We can precompute information that allows us to output
the paths associated with each edge inG[T ] in time linear in the number of edges ofG it
contains. Note that long distance paths will mostly consistof these precomputed paths so
that the time per edge can be made very small. This technique can be generalised to multiple
layers.

3 Instantiation Using Highway Hierarchies

Preliminaries. For each nodev, we define some neighbourhood node setN(v). Then, the
highway networkof a graphG = (V, E) is defined by its edge set: an edge(u, v) ∈ E
belongs to the highway network iff there are nodess, t ∈ V such that the edge(u, v) appears
in the shortest path〈s, . . . , u, v, . . . , t〉 with the property thatv 6∈ N(s) andu 6∈ N(t). The
size of a highway network (in terms of the number of nodes) canbe considerably reduced
by a contraction procedure: for each nodev, we check abypassability criterionthat decides
whetherv should bebypassed—an operation that creates shortcut edges(u, w) representing
paths of the form〈u, v, w〉. The graph that is induced by the remaining nodes and enriched
by the shortcut edges forms thecoreof the highway network.

A highway hierarchyof a graphG consists of several levelsG0, G1, G2, . . . , GL. Level 0
corresponds to the original graphG. Level 1 is obtained by computing thehighway network
of level 0, level 2 by computing the highway network of the coreG′

1 of level 1 and so on.
Let us fix any rule that decides which element Dijkstra’s algorithm removes from the

priority queue when there is more than one queued element with the smallest key. Then,
during a Dijkstra search from a given nodes, all nodes are settled in a fixed order. The
Dijkstra rankrks(v) of a nodev is the rank ofv w.r.t. this order.

Transit Nodes.Nodes on high levels of a highway hierarchy have the propertythat they are
used on shortest paths far away from starting and target nodes. ‘Far away’ is defined with
respect to the Dijkstra rank. Hence, it is natural to use (thecore of) some levelK of the
highway hierarchy for the transit node setT . Note that we have quite good (though indirect)
control over the resulting size ofT by choosing the appropriate neighbourhood sizes and
the appropriate value forK =: K1. In our current implementation this is level 4, 5, or 6.
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In addition, the highway hierarchy helps us to efficiently compute the required information.
Note that there is a difference between thelevelof the highway hierarchy and thelayer of
transit node search.

Access Nodes and Distance Tables.We use our highway hierarchy based code for many-
to-many routing to compute the top level distance table [18]. Roughly, this algorithm first
performs independent backward searches from all transit nodes and stores the gathered dis-
tance information inbucketsassociated with each node. Then, a forward search from each
transit node scans all buckets it encounters and uses the resulting path length information
to update a table of tentative distances. This approach can be generalised for computing
distances at layeri > 1.

We use the forward approach from Section 2 to compute the access point sets. (In our
case, we do not perform Dijkstra searches, but highway searches [3].)

Figure 2 summarises the representation used for running ouralgorithm. We have two
variants. Varianteconomicalaims at a good compromise between space consumption, pre-
processing time and query time. Economical usesK = 5 and reconstructs the information
needed for the layer-1 query using information only stored with nodes inT2. Variantgen-
erousaccepts larger distance tables by choosingK = 4 (however using somewhat larger
neighbourhoods for constructing the hierarchy). Generousstores all information required
for a query with every node. To obtain a high quality layer-2 filter L2, the generous variant
performs a complete layer-3 preprocessing based on the coreof level 1 and also stores a
distance table for layer 3.

Level LayerLevel Layer
15

23

1

0

14

22

1

0

economical generous

(3)

L

L
L2

L2

Fig. 2. Representations of information relevant to highway hierarchy transit node routing.

Queries are performed in a top down fashion. For a given query pair(s, t), first A(s) and
A(t) are computed. Then table look-ups in the top level distance table yield a first guess for
d(s, t). Now, if ¬L(s, t) we are done. Otherwise, the same procedure is repeated for layer
two. If evenL2(s, t) is true, we perform a bidirectional highway hierarchy search that can
stop if both the forward and backward search radius exceed the upper bounds computed at
layers 1 and 2. Furthermore, the search need not expand nodesat the core of levelK2 since
paths going over these nodes are covered by the search in layers 1 and 2. In the generous
variant, the search is already stopped at the level-1 core nodes, which form the access point
set for layer 3. Additional look-ups in the layer-3 table ensure the correctness of this variant.
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4 Experiments

4.1 Environment, Instances, and Parameters

The experiments were done on one core of an AMD Opteron Processor 270 clocked at
2.0 GHz with 8 GB main memory and 2× 1 MB L2 cache, running SuSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler 4.0.2 using optimisation
level 3.

We deal with two road networks. The network of Western Europe1 has been made avail-
able for scientific use by the company PTV AG. Only the largeststrongest connected com-
ponent is considered. The original graph contains for each edge a length and a road category,
e.g., motorway, national road, regional road, urban street. We assign average speeds to the
road categories, compute for each edge the average travel time, and use it as weight. In ad-
dition to thistravel time metric, we perform experiments on a variant of the European graph
with a distance metric. The network of the USA (without Alaska and Hawaii) has been
obtained from the TIGER/Line Files [19]. Again, we consideronly the largest strongest
connected component, and we deal with both a travel time and adistance metric. In contrast
to the PTV data, the TIGER graph is undirected, planarised and distinguishes only between
four road categories. All graphs2 have been taken from the DIMACS Challenge website
[20]. Table 1 summarises the properties of the used networks.

Table 1. Properties of the used road networks.

Europe USA
#nodes 18 010 173 23 947 347
#directed edges 42 560 279 58 333 344
#road categories 13 4
average speeds [km/h] 10–130 40–100

In Section 4.2 we report only the times needed to compute the shortest path distance
between two nodes without outputting the actual route, while in Section 4.3, we also give
the times needed to get a complete description of the shortest paths.

Since it has turned out that a better performance is obtainedwhen the preprocessing
starts with a contraction phase, we practically skip the first construction step (by choosing
neighbourhood sets that contain only the node itself) so that the first highway network virtu-
ally corresponds to the original graph. Then, the first real step is the contraction of level 1 to
get its core. Note that compared to [3, 21], we use a slightly improved contraction heuristic,
which sorts the nodes according to degree and then tries to bypass the node with the smallest
degree first.

The shortcut hops limit (introduced in [21]) is set to 10. Thesettings of the other param-
eters (some of them have been introduced in [5, 3]) can be found in Tab. 2. Note that when
using the travel time metric (time), for all levels of the hierarchy, we use a constant contrac-
tion ratec and a constant neighbourhood sizeH—a different one for the economical (eco)

1 14 countries: Austria, Belgium, Denmark, France, Germany,Italy, Luxembourg, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and the UK

2 Note that the experiments on the TIGER graphs had been performed before the final versions, which use a finer edge
costs resolution, were available. We did not repeat the experiments since we expect hardly any change in our measure-
ment results.
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and the generous (gen) variant. For the distance metric (dist), we use linearly increasing
sequences forc andH.

Table 2. Parameters.

metric time dist
variant eco gen eco
levels of layers 1–2(–3) 5–3 4–2–1 6–4
neighbourhood sizeH 60 110 90, 180, 270,. . .
contraction ratec 1.5 1.5 1.5, 1.6, 1.7,. . .

4.2 Main Results

Table 3 gives the preprocessing times for both road networksand both the travel time and
the distance metric; in case of the travel time metric, we distinguish between the economical
and the generous variant. In addition, some key facts on the results of the preprocessing, e.g.,
the sizes of the transit node sets, are presented. It is interesting to observe that for the travel
time metric in layer 2 the actual distance table size is only about 0.1% of the size a naive
|T2|×|T2| table would have. As expected, the distance metric yields more access points than
the travel time metric (a factor 2–3) since not only junctions on very fast roads (which are
rare) qualify as access point. The fact that we have to increase the neighbourhood size from
level to level in order to achieve an effective shrinking of the highway networks leads to
comparatively high preprocessing times for the distance metric.

Table 3. Statistics on preprocessing for the highway hierarchy approach. For each layer, we give the size (in terms of
number of transit nodes), the number of entries in the distance table, and the average number of access points to the layer.
‘Space’ is the totaloverheadof our approach.

layer 1 layer 2 layer 3
metric variant |T | |table| |A| |T2| |table2| |A2| |T3| |table3| space time

[× 106] [× 106] [× 106] [B/node] [h]

USA
time

eco 12 111 147 6.1184 379 30 4.9 – – 111 0:59
gen 10 674 114 5.7485 410 204 4.23 855 407 173 244 3:25

dist eco 15 399 237 17.0102 352 41 10.9 – – 171 8:58

EUR
time

eco 8 964 80 10.1118 356 20 5.5 – – 110 0:46
gen 11 293 128 9.9323 356 130 4.12 954 721 119 251 2:44

dist eco 11 610 135 20.3 69 775 31 13.1 – – 193 7:05

Table 4 summarises the average case performance of transit node routing. For the travel
time metric, the generous variant achieves average query times more than two orders of
magnitude lower than highway hierarchies alone [3]. At the cost of a factor 2.4 in query
time, the economical variant saves around a factor of two in space and a factor of 3.5 in
preprocessing time.

Finding a good locality filter is one of the biggest challenges of a highway hierarchy
based implementation of transit node routing. The values inTab. 4 indicate that our filter is
suboptimal: for instance, only 0.0064% of the queries performed by the economical variant
in the US network with the travel time metric would require a local search to answer them
correctly. However, the locality filterL2 forces us to perform local searches in 0.278% of all
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cases. The high-quality layer-2 filter employed by the generous variant is considerably more
effective, still the percentage of false positives is about90%.

For the distance metric, the situation is worse. Only 92% and82% of the queries are
stopped after the top layer has been searched (for the US and the European network, respec-
tively). This is due to the fact that we had to choose the coresof levels 6 and 4 as layers
1 and 2 since the shrinking of the highway networks is less effective so that lower levels
would be too big. It is important to note that we concentratedon the travel time metric—
since we consider the travel time metric more important for practical applications—, and we
spent comparatively little time to tune our approach for thedistance metric. For example, a
variant using a third layer (namely levels 6, 4, and 2 as layers 1, 2, and 3), which is not yet
supported by our implementation, seems to be promising. Nevertheless, the current version
shows feasibility and still achieves an improvement of a factor of 71 and 56 (for the US
and the European network, respectively) over highway hierarchies alone [21, Tab. 5, with
distance table optimisation].

Table 4. Performance of transit node routing with respect to 10 000 000 randomly chosen(s, t)-pairs. Each query is per-
formed in a top-down fashion. For each layeri, we report the percentage of the queries that is answered correctly in some
layer≤ i and the percentage of the queries that is stopped after layeri (i.e.,¬Li(s, t)).

layer 1 [%] layer 2 [%] layer 3 [%]
metric variant correct stopped correct stopped correct stoppedquery time

USA
time

eco 99.86 98.87 99.9936 99.7220 – – 11.5µs
gen 99.89 99.20 99.9986 99.9862 99.99986 99.99984 4.9µs

dist eco 98.43 91.90 99.9511 97.7648 – – 87.5µs

EUR
time

eco 99.46 97.13 99.9908 99.4157 – – 13.4µs
gen 99.74 98.65 99.9985 99.9810 99.99981 99.99972 5.6µs

dist eco 95.32 81.68 99.8239 95.7236 – – 107.4µs

The remainder of this section refers to the travel time metric. Since the overwhelming
majority of all cases are handled in the top layer (about 99% in case of the US network),
the average case performance says little about the performance for more local queries which
might be very important in applications. Therefore we use the method developed in [5] to
get more detailed information about the query time distributions for queries ranging from
very local to global. Figure 3 gives for each variant (economical/generous) and for each
valuer on thex-axis a distribution for 1 000 queries with random starting point s and the
target nodet with Dijkstra rank rks(t) = r. The distributions are represented as box-and-
whisker plots [22]: each box spreads from the lower to the upper quartile and contains the
median, the whiskers extend to the minimum and maximum valueomitting outliers, which
are plotted individually. (Appendix A contains analogous figures for the European network
with the travel time metric and for both networks with the distance metric.)

For the generous approach, we can easily recognise the threelayers of transit node rout-
ing with small transition zones in between: For ranks218–224 we usually have¬L(s, t) and
thus only require cheap distance table accesses in layer 1. For ranks212–216, we need addi-
tional look-ups in the table of layer 2 so that the queries getsomewhat more expensive. In
this range, outliers can be considerably more costly, indicating that occasional local searches
are needed. For small ranks we usually need local searches and additional look-ups in the ta-
ble of layer 3. Still, the combination of a local search in a very small area and table look-ups
in all three layers usually results in query times of only about 20µs.
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In the economical approach, we observe a high variance in query times for ranks215–
216. In this range, all types of queries occur and the differencebetween the layer-1 queries
and the local queries is rather big since the economical variant does not make use of a third
layer. For smaller ranks, we see a picture very similar to basic highway hierarchies with
query time growing logarithmically with Dijkstra rank.
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Fig. 3. Query times for the USA with the travel time metric as a function of Dijkstra rank.

4.3 Complete Description of the Shortest Path

For a given node pair(s, t), in order to get a complete description of the shortests-t-path, we
first perform a transit node query and determine the layeri that is used to obtain the shortest
path distance. Then, we have to determine the path froms to the forward access pointu to
layer i, the path from the backward access pointv to t, and the path fromu to v. In case of
a local query, we can fall back on [21].

Currently, we provide an efficient implementation only for the case that the path goes
through the top layer. In all other cases, we just perform a normal highway search and
invoke the methods from [21]. The effect on the average timesis very small since more than
99% of the queries are correctly answered using only the top search (in case of the travel
time metric; cp. Tab. 4).

When a nodes and one of its access pointsu are given, we can determine the next node
on the shortest path froms to u by considering all adjacent nodess′ of s and checking
whetherd(s, s′)+d(s′, u) = d(s, u). In most cases, the distanced(s′, u) is directly available
sinceu is also an access point ofs′. In a few cases—whenu is not an access point ofs′—, we
have to consider all access pointsu′ of s′ and check whetherd(s, s′) + d(s′, u′) + d(u′, u) =
d(s, u). Note thatd(u′, u) can be looked up in the top distance table. Using this subroutine,
we can determine the path froms to the forward access pointu and from the backward
access pointv to t.

A similar procedure can be used to find the path fromu to v (cp. [21]). However, in this
case, we consider only adjacent nodesu′ of u that belong to the top layer as well because
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only for these nodes we can look upd(u′, v). Since there are shortest paths between top
layer nodes that leave the top layer—we call such pathshidden paths—, we execute an
additional preprocessing step that determines all hidden paths and stores them in a special
data structure (after the used shortcuts have been expanded). Whenever we cannot find the
next node on the path tov considering only adjacent nodes in the top layer, we look forthe
right hidden path that leads to the next node in the top layer.

In order to unpack the used shortcuts (i.e., determine the subpaths in the original graph
that correspond to the shortcuts), we use the method from [21, Variant 3]. In Tab. 5 we give
the additional preprocessing time and the additional disk space for the hidden paths and
the unpacking data structures. Furthermore, we report the additional time that is needed to
determine a complete description of the shortest path and totraverse3 it summing up the
weights of all edges as a sanity check—assuming that the distance query has already been
performed. That means that the total average time to determine a shortest path is the time
given in Tab. 5 plus the query time given in Tab. 4.

Table 5. Additional preprocessing time, additional disk space and query time that is needed to determine a complete de-
scription of the shortest path and to traverse it summing up the weights of all edges—assuming that the query to determine
its lengths has already been performed. Moreover, the average number of hops—i.e., the average path length in terms of
number of nodes—is given. These figures refer to experimentson the graphs with the travel time metric using the generous
variant.

preproc. space query # hops
[min] [MB] [ µs] (avg.)

USA 4:04 193 258 4 537
EUR 7:43 188 155 1 373

5 Conclusions and Future Work

We have demonstrated that query times for quickest paths in road networks can be reduced
by another two orders of magnitude compared to the best previous techniques—highway hi-
erarchies and reach based routing. Building on highway hierarchies, this can be achieved us-
ing a moderate amount of additional storage and precomputation. Paradoxically, the biggest
problem for the application of transit node routing may be that it is far too fast for classi-
cal route planning. Already the previous best techniques had query time comparable to the
time needed for just traversing the quickest path, let alonecommunicating or drawing it.
Still, in applications like traffic simulation or optimisation problems in logistics, we may
need a huge number of shortest path distances and only few actual shortest paths. We also
consider the proof that few access nodes suffice for all long distance quickest paths to be an
interesting insight into the structure of road networks.

Although conceptually simple, an efficient implementationof transit node routing has so
many ingredients that there are many further optimisationsopportunities and a large spec-
trum of trade-offs between query time, preprocessing time,and space usage. For reducing
the average query time, we could try to precompute information analogous to edge flags or
geometric containers [16, 17, 15] that tells us which accessnodes lead to which regions of
the graph.

3 Note that we donot traverse the path in the original graph, but we directly scanthe assembled description of the path.
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There are many interesting ways to choose transit nodes. Forexample nodes with high
node reach [9, 10] could be a good starting point. Here, we candirectly influence|T |, and
the resulting reach bound might help defining a simple locality filter. However, it seems that
geometric reach or travel time reach do not reflect the inhomogeneous density of real world
road networks. Hence, it would be interesting if we could efficiently approximate reach
based on the Dijkstra rank.

Another interesting approach might be to start with some locality filter that guarantees
uniformly small local searches and then to view it as an optimisation problem to choose a
small set of transit nodes that cover all the local search spaces.

Parallel processing can easily be used to accelerate preprocessing, or to execute many
queries in parallel. With very fine grained multi-core parallelism it might even be possible to
accelerate an individual query. Forward local search, backward local search, and each table
look-up are largely independent of each other.
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Fig. 4. Query times for Europe with the travel time metric as a function of Dijkstra rank.
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Fig. 5. Query times for the distance metric as a function of Dijkstrarank.
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