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Abstract. When you drive to somewhere ‘far away’, you will leave yourrent location via one of only a
few ‘important’ traffic junctions. Starting from this inforal observation, we develop a generic algorithmic
approach—transit node routing—that allows us to reduce quickest-path queries in roadorésito a small
number of table look-ups. We implement this basic approathghighway hierarchiesFor the road
maps of Western Europe and the United States, our best qgneeg improve over the best previously
published figures by two orders of magnitude. This is more e million times faster than the best
known algorithm for general networks. We also explain howdmpute complete descriptions of shortest
paths (and not only their lengths) very efficiently.

1 Introduction

Computing an optimal route in a road network between spec#@irce and target nodes
(i.e., places/intersections) is one of the showpieces afwerld applications of algorith-
mics. Besides the omnipresent application of car navigaystems and internet route plan-
ners, even faster route planning is needed for massivectgaffiulation and optimisation in
logistics systems. Beyond mere computational efficierfay,methods presented here also
give quantitative insight into the structure of road netkgoand justify the way humans do
route planning.

The classical algorithm for route planning—Dijkstra’s @lighm [1]—iteratively visits
all nodes that are closer to the source node than the tardetlmefore reaching the target.
On road networks for a subcontinent like Western Europe erUBSA, this takes about
ten seconds on a state-of-the-art workstation. Since ghisa slow for many applications,
commercial systems use heuristics that do not guaranteeapoutes. Therefore, there has
been considerable interest in speedup techniques for domgmptimalroutes.

Recently, Bast, Funke and Matijevic [2] have introduced aamowe calltransit node
routing which is based on the following two key observations: Fitlsere is a relatively
small set otransit nodesabout 10 000 for the US road network, with the property tbat f
every pair of nodes that are ‘not too close’ to each otherstimtest path between them
passes throught least oneof these transit nodes. Second, for every node, the setriditra
nodes encountered first when going far—we call theesgess nodesis small (about 10).
They have implemented this idea using a uniform grid to dé§n#iciently far away’. This
way about 98% of all queries can be answered using a few tablkeups. However, since
the remaining 2% of the local queries are orders of magnitlmger, they are not able to
report query times that outperform the fastest existing@mgntation, which uses highway
hierarchies [3]. Furthermore, preprocessing time, thawgguadratic, is very high.

Independently, Muller et al. [4] have developed a similgpr@ach based on vertex sepa-
rators. This approach uses several CPU-days of preprogessd more space than fits on a
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Fig. 1. Finding the optimal travel time between two points somewHhegtween Saarbriicken and Karlsruhe amounts to
retrieving the 2x 4 access nodeggliamonds), performing 16 table look-ups between all pafieccess nodes, and checking
that the two disks defining thiecality filter do not overlap. The figure draws the levels of the highwayan@y using
coloursgrey, red, blug, andgreerfor levelsO-1, 2, 3, and4, respectivelyTransit nodesre drawn as small orange squares.

single hard disk. After all data needed for a query is presethte processor cache, a query
still takes about 5@s.

We present the first complete implementation of transit nodéing. We first develop
transit node routing into a generic technique in Sectiona2 tian be instantiated in many
ways. In particular, we add furthéayersto transit node routing that allow to handle local
queries as well. We instantiate this approach for highwayanchies [5, 3] in Section 3.
Figure 1 gives an example. Experiments reported in Sectiginelaverage query times of
about 5us and query times around 28 for slowest category of queries. Our preprocessing
times are slower than for highway hierarchies alone bugefasian in [2]. Our main focus
is on computingquickest patteven if we use the terrshort However, we also give some
results on computing travel distances.

Related Work

Bidirectional Search.A classical technique ibidirectional searchwhich simultaneously
searches forward from and backwards from until the search frontiers meet. Many more
advanced speedup techniques (including ours) use bidinetsearch as an ingredient.

Separators. Perhaps the most well known property of road networks is tinay are al-
most planar, i.e, techniques developed for planar graph®ften also work for road net-
works. Queries accurate within a factar+ ¢) can be answered in near constant time using
O((nlogn)/e) space and preprocessing time [6]. Usifn log® n) space and preprocess-
ing time, query timeD(y/nlogn) can be achieved [7] for directed planar graphs without
negative cycles. A previous practical approach based oaratps is theseparator based
multi-level method8]. The idea is to partition the graph into small compondiytsemov-
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ing a (hopefully small) set of separator nodes. These stparades together with edges
representing precomputed paths between them constitutesttt level of the graph.

Using more space and preprocessing time, separators casetdar transit node rout-
ing. The separator nodes become transit nodes and the amdss are the border nodes
of the component of. Local queries are those within a single component. Andtnesr
of transit nodes can be added by recursively finding separafeeach component. Muller
et al. [4] have essentially developed this approach (usifigrent terminology). An inter-
esting difference to generic transit node routing is thatrérquired information for routing
between any pair of components is arranged together. Tkes tadditional space but has
the advantage that the information can be accessed more e#iatiently (it also allows
subsequent space optimisations). Although separatorsanf metworks have much better
properties than the worst case bounds for planar graphsivgoglgest, separator based tran-
sit node routing needs many more access nodes than our sslfrergé rather thanx 10
per node for Western Europe). This leads to higher spaceauogptson, preprocessing time,
and query time. The main reason for the difference in numbacocess nodes is that the
separator approach does not take the ‘sufficiently far awatgrion into account that is so
important for reducing the number of access nodes in oumsehe

Highway Hierarchies. Commercial systems use information on road categoriesaedsp
up search. ‘Sufficiently far away’ from source and targety oimportant’ roads are used.
This requires manual tuning of the data and a delicate tfadetween computation speed
and suboptimality of the computed routes. In previous paf®r3] we introduced the idea
to automaticallycomputehighway hierarchieshat yieldoptimal routesuncompromisingly
quickly. The basic idea is to define a neighbourhood for each node risistoof its H
closest neighbours. Now an edge v) is a highway edge if there is some shortest path
(s,...,u,v,...t)y such that neither is in the neighbourhood @fnorv is in the neighbour-
hood ofs. This defines the first level of the highway hierarchy. Aftentracting the network
to remove low degree nodes, the same procedure (identifiimdpighway network at the
next level followed by contraction) is applied recursivélje obtain a hierarchy. The query
algorithm is bidirectional Dijkstra with restrictions oslaxing certain edges. Roughly, far
away from source or target, only high level edges need to hsidered. Highway hierar-
chies are successful (several thousand times faster thlkstia) because of the property of
real world road networks that fmonstant neighbourhood siZé, the levels of the hierar-
chy shrink geometricallyOne can view this asself-similarity—each level of the hierarchy
looks similar to the original network, just a constant facimaller. Under certain (somewhat
optimistic) assumptions, this self-similarity yieltisggarithmicquery time in contrast to the
superlinear query time of Dijkstra’s algorithm.

Reach Based RoutingComparable effects can be achieved with the closely relaieiu
nique ofreach based routingp, 10].

Distance Tables.In [3] transit node routing ilmostanticipated. Precomputed all-to-all
distances on some sufficiently high level—s&y— of the highway hierarchy are used to
terminate the local searches when they ascended far enauthie ihierarchy. The main
differences to transit node routing is that access poirscamputed online and that only
distances within levek of the highway hierarchy (rather than distances in the uphey
graph) are precomputed. This leads to much larger sets esagints£ 55) that made
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precomputing them appear much less attractive as it agtisallt was also not addressed,
how to decidevhenthe distance given by the distance table is the actual Stqréeh dis-
tance.

Goal Direction. Another interesting property of road networks is that thikgvaeffective
goal directed search usidg search[11]: lower bounds define a vertex potential that directs
search towards the target. This approach was recently stmWwe very effective if lower
bounds are computed using precomputed shortest pathekstama carefully selected set of
about 20Landmarknodes [12, 13] using thEriangle inequality ALT). In combination with
reach based routing, this is one of the fastest known spdaedbpiques [10]. An interesting
observation is that in transit node routing, the accesssooeld be used as landmarks (with
aid of the distance tables). The resulting lower bound cbaldsed for distinguishing local
and global queries or for guiding local search.

Geometry. Finally, a tempting property of road networks is that nodageha geographic
position. Even if this information is not available, eqyalkeful coordinates can be synthe-
sised [14]. Interestingly, so far, successful geometreesiop techniques have always been
beaten by related non-geometric techniques (e.g. [11] By1[3] or [15] by [16, 17]). We
initially thought that the highway hierarchy approach @utprming the grid based approach
to transit node routing would turn out to be another instaofabis phenomenon. However,
currently it looks like the highway hierarchy approach readyeometric locality filter for
good performance.

2 Transit Node Routing

To simplify notation we will present the approach for undtexl graphs. However, the
method is easily generalised to directed graphs and oumiaighierarchy implementa-
tion already handles directed graphs. Consider any set V' of transit nodesanaccess
mappingA : V — 27, and alocality filter L : V x V — {true, false}. We require that
—L(s,t) implies that the shortest path distance is

d(s,t) = min{d(s,u) + d(u,v) +d(v,t) : u € A(s),v € A(t)} . (1)

In principle, we can pick any set of transit nodes, any acoeg®ing, and any locality filter
fulfilling Equation (1) to obtain a transit node query alglnm:

Assume we have precomputed all distances between nodes in

If =L(s,t) then computel(s,t) using Equation (1)

Else, use any other routing algorithm.

Of course, we want a good choice(@f, A, L). 7 should be small but allow many global
gueries,L should efficiently identify as many of these global querygas possible, and we
should be able to store and evaludtefficiently.

We can apply aecond layeof generalised transit node routirtg the remaining local
queries (that may dominate some real world applicationg)h@&ve a node s&, O 7, an
access mapping, : V — 2%, and a locality filterL, such that-L,(s,t) implies that the
shortest path distance is defined by Equation 1 or by

d(s,t) = min{d(s,u) + d(u,v) +d(v,t) : u € As(s),v € As(t)} . 2
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In order to be able to evaluate Equation 2 efficiently we negulécompute the local con-
nections from{d(u, v) : u,v € 75 A L(u,v)} which cannot be obtained using Equation 1.
In an analogous way we can add further layers.

General Techniques

We now describe techniques that can be used together witlsetnyf transit nodes. The
more specific techniques presented in Section 3 will refitkiaisome cases replace these
general techniques.

Computing Access Nodes: Backward Approa&hart a Dijkstra search from each transit
nodev € 7. Run it until all paths leading to nodes in the priority qugass over another
nodew € 7. Recordv as an access node for any naden a shortest path fromthat does
not lead over another node ih. Record an edgév, w) with weightd(v, w) for a transit
graphG|[T| = (7, E7). When this local search has been performed from all trausies,
we have found all access nodes and the distance table canmputad using an all-pairs
shortest path computation @[7].

Layer 2 Informationis computed similarly to the top level information excepitth search

on the transit grapliz[7;] can be stopped when all paths in the priority queue pass over a
top level transit nodev € 7. Level 2 distances from each nodec 7; can be stored space
efficiently in a static hash table. We only need to store dista that actually improve on the
distances obtained going via the top leVel

Computing Access Nodes: Forward Approac®tart a Dijkstra search from each node
Stop when all paths in the shortest path tree are ‘coverettamgit nodes. Take these transit
nodes as access pointsw@afApplied naively, this approach is rather inefficient. Ho'ee
we can use two tricks to make it efficient. First, during tharsk we do not relax the edges
leaving transit nodes. This leads to the computation of &= of the access points. For-
tunately, this set can be easily reduced if the distancegdeet all transit nodes are already
known: if an access point can be reached from via another access pointon a short-
est path, we can discard. Second, we can only determine the access point4ets for

all nodesv € 7, and the setsi,(u) for all nodesu € V. Then, for any node:, A(u)
can be computed &g, 4,(,, A(v). Again, we can use the reduction technique to remove
unnecessary elements from the set union.

Locality Filters. There seem to be two basic approaches to transit node ro@img that
starts with a locality filter, and then has to find a good set of transit no@efor which
L works (e.g., [2]). The other approach starts withand then has to find a locality fil-
ter that can be efficiently evaluated and detects as acturasepossible whether local
search is needed (e.g., Section 3). One approach that we feeny effective is to use
the information gained when computing the distance tahiddyger: + 1 to define a lo-
cality filter for layeri. For example, we can compute the raditig:) of a circle around
every nodeu € 7, that contains for each entr(u,v) in the layer{: + 1) table the
meeting point of a bidirectional search betweerand v. We can use this information
in several ways. We can (pre)compute conservative ciraé far arbitrary nodesv as
ri(v) := max {||v — ul|s + r(u) : u € A;41(v)}. Note that even if we are not able to store
the information gathered during a precomputation at layet, it might still make sense to
run it in order to gather the more compact locality inforroati
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Space Efficient Storage of Access Nodésll shortest paths from a nodeto its access
nodesA(v) have to go over nodes from a skf, we can exploit thatd(v) C A(M) =

Uuenrr A(w). Moreover, if the nodes i/ are ‘close’ tov, we can expect thati(M) is

not too much bigger thar (v). Therefore, as long as we can efficiently fid it suffices
to store access node information with a subset of the nodes.slibset might b&; or a

separator partitioning the graph into small pieces.

Outputting Shortest Pathgrather than only distances). First note that in a graph with
bounded degree (e.g. a road network) and with a (near) curistee distance oracle, we
can output a shortest path frosto ¢ in (near) constant time per edge: Look for an edge
(s,u) such thato(s,u) + d(u,t) = d(s, t), output(s, u). Continue by looking for a shortest
path fromu to t. Repeat untit is reached. We can speed up this process by two measures.
Suppose the shortest path uses the access nodesl(s) andy € A(t). First, while re-
constructing the path fromto = (and fromy to ¢t) we can use this access node information
to eliminate all search for the right access nodes and prrtmly a single distance table
look-up. Second, reconstructing the path frano y can work on the transit grap@[7|
rather than on the original graph. We can precompute infoamahat allows us to output
the paths associated with each edgé&if] in time linear in the number of edges 6fit
contains. Note that long distance paths will mostly consighese precomputed paths so
that the time per edge can be made very small. This technajubegeneralised to multiple
layers.

3 Instantiation Using Highway Hierarchies

Preliminaries. For each node, we define some neighbourhood node §¢t). Then, the
highway networlof a graphG = (V, E) is defined by its edge set: an edgev) € E
belongs to the highway network iff there are nodgse V' such that the edge, v) appears

in the shortest patls, ..., u,v,...,t) with the property that ¢ N(s) andu ¢ N(t). The
size of a highway network (in terms of the number of nodes)lmonsiderably reduced
by a contraction procedure: for each nadeve check dypassability criteriorthat decides
whetherv should bebypassed-an operation that creates shortcut edges) representing
paths of the formu, v, w). The graph that is induced by the remaining nodes and emtiche
by the shortcut edges forms there of the highway network.

A highway hierarchyf a graphG consists of several levels), G1, G, ..., G. Level O
corresponds to the original graph Level 1 is obtained by computing timghway network
of level 0, level 2 by computing the highway network of theecGt; of level 1 and so on.

Let us fix any rule that decides which element Dijkstra’s alfpon removes from the
priority queue when there is more than one queued elemehttiht smallest key. Then,
during a Dijkstra search from a given nodgall nodes are settled in a fixed order. The
Dijkstra rankrk,(v) of a nodev is the rank ofv w.r.t. this order.

Transit Nodes.Nodes on high levels of a highway hierarchy have the progbegithey are
used on shortest paths far away from starting and targetsndelar away’ is defined with
respect to the Dijkstra rank. Hence, it is natural to use ¢ibre of) some leveK of the
highway hierarchy for the transit node §etNote that we have quite good (though indirect)
control over the resulting size &f by choosing the appropriate neighbourhood sizes and
the appropriate value fak” =: K. In our current implementation this is level 4, 5, or 6.
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In addition, the highway hierarchy helps us to efficientlyngute the required information.
Note that there is a difference between el of the highway hierarchy and tHayer of
transit node search.

Access Nodes and Distance Tabl&ge use our highway hierarchy based code for many-
to-many routing to compute the top level distance table.[R&Jughly, this algorithm first
performs independent backward searches from all trandgsiand stores the gathered dis-
tance information irbucketsassociated with each node. Then, a forward search from each
transit node scans all buckets it encounters and uses thimggath length information

to update a table of tentative distances. This approach eageberalised for computing
distances at layer> 1.

We use the forward approach from Section 2 to compute thesaquant sets. (In our
case, we do not perform Dijkstra searches, but highway keai8].)

Figure 2 summarises the representation used for runninglgorithm. We have two
variants. Varianeconomicakims at a good compromise between space consumption, pre-
processing time and query time. Economical uses- 5 and reconstructs the information
needed for the layer-1 query using information only stordith wodes in7,. Variantgen-
erousaccepts larger distance tables by choosihg= 4 (however using somewhat larger
neighbourhoods for constructing the hierarchy). Genestoges all information required
for a query with every node. To obtain a high quality layerk2fiL,, the generous variant
performs a complete layer-3 preprocessing based on theofdegel 1 and also stores a
distance table for layer 3.

Lgvel economical La;l/erLeveI generous Layer
4 1
s L 2 2 2

Fig. 2. Representations of information relevant to highway higmaitransit node routing.

Queries are performed in a top down fashion. For a given query ait), first A(s) and
A(t) are computed. Then table look-ups in the top level distaslgke tyield a first guess for
d(s,t). Now, if =L(s,t) we are done. Otherwise, the same procedure is repeated/éor la
two. If evenLs(s, ) is true, we perform a bidirectional highway hierarchy search tlzat c
stop if both the forward and backward search radius excezdpper bounds computed at
layers 1 and 2. Furthermore, the search need not expand abttescore of levek’, since
paths going over these nodes are covered by the search s thyand 2. In the generous
variant, the search is already stopped at the level-1 catesyavhich form the access point
set for layer 3. Additional look-ups in the layer-3 table @mesthe correctness of this variant.
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4 Experiments

4.1 Environment, I nstances, and Parameters

The experiments were done on one core of an AMD Opteron Psoc&y0 clocked at
2.0 GHz with 8 GB main memory and>2 1 MB L2 cache, running SUSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler24u&ing optimisation
level 3.

We deal with two road networks. The network of Western Eutdyas been made avail-
able for scientific use by the company PTV AG. Only the largésingest connected com-
ponent is considered. The original graph contains for edgk a length and a road category,
e.g., motorway, national road, regional road, urban sti&etassign average speeds to the
road categories, compute for each edge the average tnaneldind use it as weight. In ad-
dition to thistravel time metricwe perform experiments on a variant of the European graph
with a distance metricThe network of the USA (without Alaska and Hawaii) has been
obtained from the TIGER/Line Files [19]. Again, we considelly the largest strongest
connected component, and we deal with both a travel time aigtance metric. In contrast
to the PTV data, the TIGER graph is undirected, planariseddgstinguishes only between
four road categories. All graphdiave been taken from the DIMACS Challenge website
[20]. Table 1 summarises the properties of the used networks

Table 1. Properties of the used road networks.

Europe USA
#nodes 18010173 23947347
#directed edges 42560279 58333344
#road categories 13 4

average speeds [km/h] 10-130 40-100

In Section 4.2 we report only the times needed to compute libeest path distance
between two nodes without outputting the actual route, evimilSection 4.3, we also give
the times needed to get a complete description of the shqdéss.

Since it has turned out that a better performance is obtaitezh the preprocessing
starts with a contraction phase, we practically skip thé éomstruction step (by choosing
neighbourhood sets that contain only the node itself) stthieefirst highway network virtu-
ally corresponds to the original graph. Then, the first resg & the contraction of level 1 to
get its core. Note that compared to [3, 21], we use a slightlyroved contraction heuristic,
which sorts the nodes according to degree and then triegsisythe node with the smallest
degree first.

The shortcut hops limit (introduced in [21]) is set to 10. He¢tings of the other param-
eters (some of them have been introduced in [5, 3]) can bedfouiiab. 2. Note that when
using the travel time metric (time), for all levels of the r@rchy, we use a constant contrac-
tion ratec and a constant neighbourhood siZe—a different one for the economical (eco)

114 countries: Austria, Belgium, Denmark, France, Germ#aly, Luxembourg, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and the UK

2 Note that the experiments on the TIGER graphs had been pwtbbefore the final versions, which use a finer edge
costs resolution, were available. We did not repeat thererpats since we expect hardly any change in our measure-
ment results.



and the generous (gen) variant. For the distance metrit),(die use linearly increasing
sequences farand H.

Table 2. Parameters.

metric time dist
variant eco gen eco
levels of layers 1-2(-3) 5-3 4-2-1 6-4
neighbourhood sizé&l 60 110 90, 180, 27Q,..
contraction rate 1.5 1.5 1.5,1.6,1.7,..

4.2 Main Results

Table 3 gives the preprocessing times for both road netwamkisboth the travel time and

the distance metric; in case of the travel time metric, werdislish between the economical
and the generous variant. In addition, some key facts orethéts of the preprocessing, e.g.,
the sizes of the transit node sets, are presented. It i€8iirg to observe that for the travel
time metric in layer 2 the actual distance table size is oblyus 0.1% of the size a naive

| 75| x | 73| table would have. As expected, the distance metric yielderaccess points than

the travel time metric (a factor 2—3) since not only junct@m very fast roads (which are

rare) qualify as access point. The fact that we have to iserdge neighbourhood size from
level to level in order to achieve an effective shrinking loé thighway networks leads to

comparatively high preprocessing times for the distanceime

Table 3. Statistics on preprocessing for the highway hierarchy @ggr. For each layer, we give the size (in terms of
number of transit nodes), the number of entries in the distaable, and the average number of access points to the layer
‘Space’ is the totabverheadof our approach.

layer 1 layer 2 layer 3
metric varian{ |7| [tabld |A||l |72| [table| |A2|| |Z3] |tabley|| space time
[x 10°%] [x 10%] [x 10°]|[B/node]  [h]
time eco 12111 147 6.184379 30 4.9 - - 111 0:59
USA gen 10674 114 5.485410 204 4.8855407 173 244 3:25
dist eco |15399 237 17.002352 41 109 - - 171 8:58
time €0 8964 80 10.]118356 20 55 - - 110 0:46
EUR gen 11293 128 9.B23356 130 4.r954721 119 251 2:44
dist eco |[11610 135 20.369775 31 13.L - - 193 7:05

Table 4 summarises the average case performance of tradsitrauting. For the travel
time metric, the generous variant achieves average quasstmore than two orders of
magnitude lower than highway hierarchies alone [3]. At thet®f a factor 2.4 in query
time, the economical variant saves around a factor of twgats and a factor of 3.5 in
preprocessing time.

Finding a good locality filter is one of the biggest challengé a highway hierarchy
based implementation of transit node routing. The valudam 4 indicate that our filter is
suboptimal: for instance, only 0.0064% of the queries pearéd by the economical variant
in the US network with the travel time metric would requireoadl search to answer them
correctly. However, the locality filtek, forces us to perform local searches in 0.278% of all
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cases. The high-quality layer-2 filter employed by the gengrariant is considerably more
effective, still the percentage of false positives is al8fi#o.

For the distance metric, the situation is worse. Only 92% &2fth of the queries are
stopped after the top layer has been searched (for the USarktlitopean network, respec-
tively). This is due to the fact that we had to choose the cofdsvels 6 and 4 as layers
1 and 2 since the shrinking of the highway networks is lesscéffe so that lower levels
would be too big. It is important to note that we concentraiadhe travel time metric—
since we consider the travel time metric more important facpcal applications—, and we
spent comparatively little time to tune our approach fordistance metric. For example, a
variant using a third layer (namely levels 6, 4, and 2 as Rfe®, and 3), which is not yet
supported by our implementation, seems to be promisingeftlesiess, the current version
shows feasibility and still achieves an improvement of dadaof 71 and 56 (for the US
and the European network, respectively) over highway htaras alone [21, Tab. 5, with
distance table optimisation].

Table 4. Performance of transit node routing with respect to 10 0@0r@ddomly choseifs, t)-pairs. Each query is per-
formed in a top-down fashion. For each layewe report the percentage of the queries that is answeregoctigrin some
layer < ¢ and the percentage of the queries that is stopped afterddyer,—~L;(s,t)).

layer 1 [%] layer 2 [%)] layer 3 [%]
metric variani correct stopped correct stopped correct stoppgeery time
time €° 99.86 98.87 99.9936 99.7220 - - 11.5us
USA gen 99.89 99.20 99.9986 99.9862 99.99986 99.99984 4.9us
dist eco 98.43 91.90 99.9511 97.7648 - - 87.5us
time €€ 99.46 97.13 99.9908 99.4157 - - 13.4us
EUR gen 99.74 98.65 99.9985 99.9810 99.99981 99.99972 5.6us
dist eco 95.32 81.68 99.8239 95.7236 - — | 107.4us

The remainder of this section refers to the travel time roe8ince the overwhelming
majority of all cases are handled in the top layer (about 99%ase of the US network),
the average case performance says little about the penaeriar more local queries which
might be very important in applications. Therefore we userttethod developed in [5] to
get more detailed information about the query time distrdns for queries ranging from
very local to global. Figure 3 gives for each variant (ecommagenerous) and for each
valuer on thez-axis a distribution for 1 000 queries with random startirmgnp s and the
target node with Dijkstra rank rk(¢) = r. The distributions are represented as box-and-
whisker plots [22]: each box spreads from the lower to theeupuartile and contains the
median, the whiskers extend to the minimum and maximum vahoigting outliers, which
are plotted individually. (Appendix A contains analogougifes for the European network
with the travel time metric and for both networks with thetdigce metric.)

For the generous approach, we can easily recognise thelélyess of transit node rout-
ing with small transition zones in between: For ragks-22! we usually have-L(s, t) and
thus only require cheap distance table accesses in layer tafks2'?2-2'6 we need addi-
tional look-ups in the table of layer 2 so that the queriessgetewhat more expensive. In
this range, outliers can be considerably more costly, atthg that occasional local searches
are needed. For small ranks we usually need local searcteslditional look-ups in the ta-
ble of layer 3. Still, the combination of a local search in anamall area and table look-ups
in all three layers usually results in query times of only @atie0:s.
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In the economical approach, we observe a high variance irydimes for rank2'°—
216 In this range, all types of queries occur and the differdreteveen the layer-1 queries
and the local queries is rather big since the economicantidoes not make use of a third
layer. For smaller ranks, we see a picture very similar tacblaighway hierarchies with
guery time growing logarithmically with Dijkstra rank.
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Fig. 3. Query times for the USA with the travel time metric as a functdf Dijkstra rank.

4.3 Complete Description of the Shortest Path

For a given node pais, t), in order to get a complete description of the shortespath, we
first perform a transit node query and determine the layeat is used to obtain the shortest
path distance. Then, we have to determine the path fréorthe forward access pointto
layeri, the path from the backward access paoitd ¢, and the path from to v. In case of

a local query, we can fall back on [21].

Currently, we provide an efficient implementation only foetcase that the path goes
through the top layer. In all other cases, we just perform amab highway search and
invoke the methods from [21]. The effect on the average tisesry small since more than
99% of the queries are correctly answered using only the ¢éapch (in case of the travel
time metric; cp. Tab. 4).

When a node and one of its access pointsare given, we can determine the next node
on the shortest path fromto « by considering all adjacent nodesof s and checking
whetherd(s, s") +d(s',u) = d(s,u). In most cases, the distanées’, ) is directly available
sinceu is also an access point gf In a few cases—wheimis not an access point ef—, we
have to consider all access pointof s’ and check whethet(s, s') + d(s', u) + d(u', u) =
d(s,u). Note thatd(u', u) can be looked up in the top distance table. Using this sulmeut
we can determine the path fromto the forward access point and from the backward
access point to t.

A similar procedure can be used to find the path froto v (cp. [21]). However, in this
case, we consider only adjacent nodésf u that belong to the top layer as well because
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only for these nodes we can look dgu’, v). Since there are shortest paths between top
layer nodes that leave the top layer—we call such phtdden paths-, we execute an
additional preprocessing step that determines all hid@gnspand stores them in a special
data structure (after the used shortcuts have been expanibdnever we cannot find the
next node on the path toconsidering only adjacent nodes in the top layer, we lookHer
right hidden path that leads to the next node in the top layer.

In order to unpack the used shortcuts (i.e., determine thpatbs in the original graph
that correspond to the shortcuts), we use the method fropVg&iant 3]. In Tab. 5 we give
the additional preprocessing time and the additional dpscs for the hidden paths and
the unpacking data structures. Furthermore, we reportdtgianal time that is needed to
determine a complete description of the shortest path arichtersé it summing up the
weights of all edges as a sanity check—assuming that thendistquery has already been
performed. That means that the total average time to datermishortest path is the time
given in Tab. 5 plus the query time given in Tab. 4.

Table 5. Additional preprocessing time, additional disk space ameryjtime that is needed to determine a complete de-
scription of the shortest path and to traverse it summindhapueights of all edges—assuming that the query to determine
its lengths has already been performed. Moreover, the geeramber of hops—i.e., the average path length in terms of
number of nodes—is given. These figures refer to experinmntse graphs with the travel time metric using the generous
variant.

preproc. space query #hops

[min] [MB] [ps] (avg.)
USA‘ 4:04 193 258 4537

EUR| 7:43 188 155 1373

5 Conclusions and Future Work

We have demonstrated that query times for quickest pathsaith metworks can be reduced
by another two orders of magnitude compared to the bestquswechniques—highway hi-
erarchies and reach based routing. Building on highwahséres, this can be achieved us-
ing a moderate amount of additional storage and precomepnt&aradoxically, the biggest
problem for the application of transit node routing may bt this far too fast for classi-
cal route planning. Already the previous best techniquelscuery time comparable to the
time needed for just traversing the quickest path, let almmamunicating or drawing it.
Still, in applications like traffic simulation or optimisah problems in logistics, we may
need a huge number of shortest path distances and only fenal stiortest paths. We also
consider the proof that few access nodes suffice for all lostguace quickest paths to be an
interesting insight into the structure of road networks.

Although conceptually simple, an efficient implementatdtransit node routing has so
many ingredients that there are many further optimisataportunities and a large spec-
trum of trade-offs between query time, preprocessing temne, space usage. For reducing
the average query time, we could try to precompute inforomaginalogous to edge flags or
geometric containers [16, 17, 15] that tells us which acoeskes lead to which regions of
the graph.

% Note that we daot traverse the path in the original graph, but we directly sbarassembled description of the path.
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There are many interesting ways to choose transit nodesxaonple nodes with high
node reach [9, 10] could be a good starting point. Here, weda@atly influence7 |, and
the resulting reach bound might help defining a simple logélter. However, it seems that
geometric reach or travel time reach do not reflect the intgeneous density of real world
road networks. Hence, it would be interesting if we couldcedfitly approximate reach
based on the Dijkstra rank.

Another interesting approach might be to start with somalitycfilter that guarantees
uniformly small local searches and then to view it as an ojgation problem to choose a
small set of transit nodes that cover all the local searchespa

Parallel processing can easily be used to accelerate pes®iog, or to execute many
gueries in parallel. With very fine grained multi-core phaigm it might even be possible to
accelerate an individual query. Forward local search, Wwaok local search, and each table
look-up are largely independent of each other.
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Fig. 4. Query times for Europe with the travel time metric as a fuorctf Dijkstra rank.
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Fig. 5. Query times for the distance metric as a function of Dijksénak.
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