Robust, AImost Constant Time Shortest-Path Queries
in Road Networks*

Peter Sanders and Dominik Schultes

Universitat Karlsruhe (TH), 76128 Karlsruhe, Germafsander s, schul tes}@r a. uka. de

Abstract. When you drive to somewhere ‘far away’, you will leave yourremt location via one of only

a few ‘important’ traffic junctions. Recently, other resgagroups and we have largely independently de-
veloped this informal observation intansit node routinga technique for reducing quickest-path queries
in road networks to a small number of table lookups. The daution of our paper is twofold. First, we
present a generic framework for transit node routing thiatel almost constant time routing for both
global and local queries. Second, we develop a highly tumggdeimentation usingighway hierarchies
For the road maps of Western Europe and the United Stateqestiquery times improve over the best
previously published figures by two orders of magnitude sTisimore than one million times faster than
the best known algorithm for general networks. We also émgiaw to compute complete descriptions of
shortest paths (and not only their lengths) very efficiently

1 Introduction

Computing an optimal route in a road network between spec#@irce and target nodes
(i.e., places/intersections) is one of the showpieces afwerld applications of algorith-
mics. Besides the omnipresent application of car navigaystems and internet route plan-
ners, even faster route planning is needed for massivectgaffiulation and optimisation in
logistics systems. Beyond mere computational efficierfay,methods presented here also
give quantitative insight into the structure of road netkgoand justify the way humans do
route planning.

The classical algorithm for route planning—Dijkstra’s @lighm [1]—iteratively visits
all nodes that are closer to the source node than the tardetlefore reaching the target.
On road networks for a subcontinent like Western Europe erUBSA, this takes about
five seconds on a state-of-the-art workstation. Since $higa slow for many applications,
commercial systems use heuristics that do not guaranteeapoutes. Therefore, there has
been considerable interest in speedup techniques for domgmptimalroutes.

In Section 2, we develop a generic frameworktfansit node routingwhich is based on
two key observations: First, there is a relatively smallgétansit nodes—about 10 000 for
the Western European or the US road network—with the prgpieat for every pair of nodes
that are ‘not too close’ to each other, the shortest pathdmtwhem passes throughleast
oneof these transit nodes. Second, for every node, the setrfitraodes encountered first
when going far—we call thesaccess nodesis small. When distances from all nodes to
their respective access nodes and between all transit hagdedeen precomputed, a ‘non-
local’ shortest-path query can be reduced to a few tableupskAn important ingredient
is alocality filter that decides whether source and target are too close so thated a
special treatment to guarantee the correct result. In dodeandle such local queries more
efficiently, we add furthelayersto the basic approach.

* Partially supported by DFG grant SA 933/1-3.

C N

Fig. 1. Finding the optimal travel time between two points somewHhegtween Saarbriicken and Karlsruhe amounts to
retrieving the 2< 4 access node@iamonds), performing 16 table lookups between all pdiecoess nodes, and checking
that the two disks defining thiecality filter do not overlap. The figure draws the levels of the highwayan@y using
coloursgrey, red, blug, andgreerfor levelsO-1, 2, 3, and4, respectivelyTransit nodesre drawn as small orange squares.

Transit node routing can be instantiated in many ways. Ini@e@d, we present one
particular instantiation, which is based bighway hierarchie$2, 3]. Figure 1 gives an ex-
ample. Experiments reported in Section 4 give average gimes of about s and query
times around 2@s for slowest category of queries. Our main focus is on comgujuick-
estpatht lengths. However, we also give some results on outputtinenapéete description
of the quickest path and on computing tragliedtances

Related Work

Bidirectional Search.A classical technique ibidirectional searchwhich simultaneously
searches forward from and backwards from until the search frontiers meet. Many more
advanced speedup techniques (including ours) use bidinetsearch as an ingredient.

Highway Hierarchies. Commercial systems use information on road categoriesaedsp
up search. ‘Sufficiently far away’ from source and targety oimportant’ roads are used.
This requires manual tuning of the data and a delicate tfadetween computation speed
and suboptimality of the computed routes. In previous paf&r3] we introduced the idea
to automaticallycomputehighway hierarchieshat yieldoptimal routesuncompromisingly
quickly. The basic idea is to define a neighbourhood for each node risistoof its H
closest neighbours. Now an edge v) is a highway edge if there is some shortest path
(s,...,u,v,...t) such that neithes is in the neighbourhood dfnorv is in the neighbour-
hood ofs. This defines the first level of the highway hierarchy. Aftentacting the network
to remove low degree nodes, the same procedure (identifiimdpighway network at the
next level followed by contraction) is applied recursivélye obtain a hierarchy. The query

! Note that we often use the terstiortestpath’ as a synonym for ‘quickest path’.

2

algorithm is bidirectional Dijkstra with restrictions oslaxing certain edges. Roughly, far
away from source or target, only high level edges need to hsidered. Highway hierar-
chies are successful (several thousand times faster thlestia) because of the property of
real world road networks that fmonstant neighbourhood siZé, the levels of the hierar-
chy shrink geometricallyOne can view this asself-similarity—each level of the hierarchy
looks similar to the original network, just a constant facimaller. Under certain (somewhat
optimistic) assumptions, this self-similarity yieltisggarithmicquery time in contrast to the
superlinear query time of Dijkstra’s algorithm.

Reach Based RoutingComparable effects can be achieved with the closely relaieiu
nique ofreach based routinf#, 5].

Using Distance Tablesln [3] transit node routing islmostanticipated. Precomputed all-
to-all distances on some sufficiently high level—sg&y— of the highway hierarchy are used
to terminate the local searches when they ascended far nodlge hierarchy. The main
differences to transit node routing is that access nodesamputed online and that only
distances within levek of the highway hierarchy (rather than distances in the upihey
graph) are precomputed. The latter leads to consideratygraets of access nodes §5
instead of 10) that made precomputing them appear muchtieastave as it actually is. It
was also not addressed, how to deaideenthe distance given by the distance table is the
actual shortest path distance.

Separators. Perhaps the most well known property of road networks is tinay are al-
most planar, i.e, techniques developed for planar graph®iten also work for road net-
works. Queries accurate within a factar+ ¢) can be answered in near constant time using
O((nlogn)/e) space and preprocessing time [6]. Usin log® n) space and preprocess-
ing time, query timeD(y/nlogn) can be achieved [7] for directed planar graphs without
negative cycles. A previous practical approach is gbparator-based multi-level method
[8]. The idea is to partition the graph into small componédaytsemoving a (hopefully small)
set of separator nodes. These separator nodes togethedgihk representing precomputed
paths between them constitute the next level of the graph.

Using more space and preprocessing time, separators casetdar transit node rout-
ing. The separator nodes become transit nodes and the amdss are the border nodes
of the component of. Local queries are those within a single component. And#yar of
transit nodes can be added by recursively finding separat@ach component. Indepen-
dently from our work, Muller et al. have essentially deysdd this approach, using different
terminology. Note that their first results [9] were published before atheoimplementa-
tion of transit node routing. However, it took some timerdliable measurement data were
availablé [10]. An interesting difference to generic transit nodetiogi is that the required
information for routing between any pair of components imrged together. This takes
additional space but has the advantage that the informatonbe accessed more cache
efficiently (it also allows subsequent space optimisadions

Although separators of road networks have much better ptiepeghan the worst case
bounds for planar graphs would suggest, separator-basesittnode routing needs about

2 We chose to interpret their work using the transit node teahaigy in order to point out similarities to our work.

3 In their implementation, the preprocessed data is storemitmard disk. Using a more compact representation, the data
would fit into main memory. Therefore, when measuring quanes, it is justifiable to assume that the required data
was in main memory. This situation makes performing expenits more difficult.

3

4-8 times as many access nodes as our scheme (dependingusetheetric) leading to
much higher preprocessing times. The main reason for tierelifce in number of access
nodes is that the separator approach does not take the isufffycfar away’ criterion into
account that is so important for reducing the number of acoesles in our approach, in
particular in case of the travel time metric.

Grid-Based Transit Node RoutingBast, Funke and Matijevic proposed the transit node
routing approach based on a geometric grid [11]: The netwsskibdivided into uniform
cells. Border nodes of these cells that are needed for ‘thsignce’ travel are used as access
nodes. The union of all access nodes forms the transit nddése locality filter it is
sufficient to check whether source and target lie a certambar of cells apart.

They were the first to explicitly formulate the central obsgions and concepts of transit
node routing. Our work was completed a few weeks later and has been acistreglargely
independently from theirs except for the fact that theirasbation that about ten access
nodes per node were sufficient motivated us to rethink oursscnode definition leading to
a considerable reduction from around 55 to about ten, whiableman implementation for
large graphs much more practicable, accelerated our dawelot process significantly and
yielded very good query times. While most algorithms déxatiin [11] cater to the specific
grid-based approach, we prefer a more generic notion oitrande routing and regard
our highway-hierarchy-based implementation only as onssipte (and very successful)
instantiation of transit node routing.

In a joint paper [12], both implementations are contrastk noticeable difference is
that we deal with all types of queries in a highly efficient wasile the grid-based vari-
ant only answers non-local queries very quickly (which, athdly, constitute a very large
fraction of all queries if source and target are picked unily at random). The grid-based
variant is designed for comparatively modest memory reqouénts, while our highway-
hierarchy-based implementation has significantly smalteprocessing and average query
times. Note that our implementation would need considgredsls memory if we concen-
trated only on undirected graphs and non-local queriesiasidne in the grid-based imple-
mentation.

Computing Distance Tableg-or given source and target node sets, a table containing the
distances between all source-target node pairs can be tedpary efficiently using a
many-to-many shortest path algorithm [13] based on highwesarchies. The development

of this algorithm was another step on the way from the highliayarchies enhanced by a
distance table to transit node routing since it allowed togote distances in the original
graph between all level nodes of the highway hierarchy.

Geometry. A tempting property of road networks is that nodes have a igggc posi-
tion. Even if this information is not available, equally fidecoordinates can be synthesised
[14]. Interestingly, so far, successful geometric speddapniques have always been beaten
by related non-geometric techniques (e.g. [15] by [16, ¥71]L8] by [19, 20]). We initially
thought that the highway hierarchy approach outperforrthieggrid-based approach to tran-
sit node routing would turn out to be another instance of phisnomenon. However, cur-
rently it looks like the highway hierarchy approach needs@ngetric locality filter for good

4 In particular, they introduced the term ‘transit node’. ljpmt paper [12], we adopted some formulations and terms
from [11] to describe the generic approach. For the sakengblgtity, we decided to keep these phrases in this paper.

4

performance. Arriving at this observation was our final gtep fully functional version of
transit node routing.

Goal Direction. Another interesting property of road networks is that thibkgvaeffective
goal directed search usidg search[15]: lower bounds define a vertex potential that directs
search towards the target. This approach was recently stmwe very effective if lower
bounds are computed using precomputed shortest pathekstama carefully selected set of
about 20Landmarknodes [16, 17] using thEriangle inequality ALT). In combination with
reach based routing, this is one of the fastest known speedhpiques [5]. An interesting
observation is that in transit node routing, the accesssooeld be used as landmarks (with
aid of the distance tables). The resulting lower bound cbaldsed for distinguishing local
and global queries or for guiding local search.

2 Transit Node Routing

To simplify notation we will present the approach for undtexl graphs. However, the
method is easily generalised to directed graphs and oumiaighierarchy implementa-
tion already handles directed graphs. Consider any/s&t V' of transit nodes an ac-
cess mapping! : V — 27 that maps a vertex to its access node set, alutality filter

L :V xV — {true, false} that decides whether ant-query is a ‘local query’ or not. We
require that-L(s, t) implies that the shortest path distance is

d(s,t) =min{d(s,u) + d(u,v) +d(v,t) : u € A(s),v € A(t)} (1)

In principle, we can pick any set of transit nodes, any acoegging, and any locality filter
fulfilling Equation (1) to obtain a transit node query alglm:

Assume we have precomputed all distances between nodes in
If =L(s,t)then computel(s,t) using Equation 1.
Else, use any other routing algorithm.
Figure 2 gives a schematic representation of transit nodtngn Of course, we want
a good choice of7, A, L). 7 should be small but allow many global queridsshould

efficiently identify as many of these global query pairs asgilde, and we should be able to
store and evaluaté efficiently.

access no

distances access nod
transit nodes

Fig. 2. Schematic representation of transit node routing.

5

We can apply aecond layeof generalised transit node routirtg the remaining local
queries (that may dominate some real world applicationg)h@&ve a node s&, O 7, an
access mapping, : V — 2%, and a locality filterL, such that-L,(s,t) implies that the
shortest path distance is defined by Equation 1 or by

d(s,t) = min{d(s,u) + d(u,v) +d(v,t) : u € As(s),v € As(t)} 2

In order to be able to evaluate Equation 2 efficiently we negui¢compute the local con-
nections from{d(u, v) : u,v € T3 A L(u,v)} which cannot be obtained using Equation 1. In
an analogous way we can add further layers.

We now describe techniques that can be used together withedof transit nodes. The
more specific techniques presented in Section 3 will refitkiasome cases replace these
general techniques.

2.1 Preliminaries

During a Dijkstra search from some nodewe say that a settled nodeis coveredby a
node set/’ if there is at least one nodec V' on the path from the rootto u. A reached
but not settled node isoveredif its tentative parent is covered. The current partial ssdr
path treeB is coveredif all currently reached but not settled nodes (i.e., alleoth the
priority queue) are covered. All nodesc V' N B\ {s} whose parent irB is not covered
arecovering nodedn addition, the root is a covering node if € V.

2.2 Computing Access Nodes: Backward Approach

From each transit node € 7, run a Dijkstra search until the partial shortest-path treég

is covered byZ \ {v}. For any non-covered nodein B, recordv as an access node for
and for any covering node, record an edgév, w) with weightd(v, w) for atransit graph
G[T] = (7, Er). Figure 3 gives an example. When this local search has beéorped
from all transit nodes, we have found all access nodes artigtence table can be computed
using an all-pairs shortest path computatiod-if].

Fig. 3. Example for the backward approach to the computation ofssccedes. Edge weights correspond to the lengths of
the drawn line segments. The black nodes belorfj.tdhe search is started from All thick edges belong to the partial
shortest-path tree. The non-covered nodes are highlightgeky: for these nodes, is an access node (suggested by the
arrows pointing ta). Note that in this example andw (but noty) are covering nodes.

5 Note that in adirectedgraph, we would perform backwardsearch, i.e., a search in the reverse graph, which explains
the name of this approach.

Layer-2 Informationis computed similarly to the top-layer information. Howgue this
case, we do not have to compute a complete distance tablg,idgufficient to store only
distances that actually improve on the distances obtaiogdyia the top laye? . This can
be done space efficiently in a static hash table. In order tapee the required distances,
for each node € 7, the single-source shortest-path search framG|[7;] can be stopped
as soon as the partial shortest-path tree is coveréd byv}.

2.3 Computing Access Nodes: Forward Approach

Start a Dijkstra search from each nadéeStop when the partial shortest-path tree is covered
by the transit node sef. Take the covering transit nodes as access nodes Applied
naively, this approach is rather inefficient. However, we oae two tricks to make it effi-
cient. First, during the search we do not relax the edgesrlgaransit nodes. This leads to a
computation of a superset of the access nodes. Fortuniislget can be easily reduced if
the distances between all transit nodes are already knbamaiccess nodgcan be reached
from u via another access nodeon a shortest path, we can discatdrigure 4 gives an
example. Second, we can only determine the access nodd @gt$or all nodesv € 7,
and the setsl,(u) for all nodesu € V. Then, for any node;, A(u) can be computed as
Uwen,) A(v). Again, we can use the reduction technique to remove unsageslements
from the set union.

Fig. 4. Example for the forward approach to the computation of exnesles including the first, but not the second ‘trick’.
Edge weights correspond to the lengths of the drawn line saggnThe black nodes belongTa The search is started
from w. All thick edges belong to the search tree. The nades, x, andy are covering nodes. Howevercan be removed
from this set since the path fromvia w to y turns out to be shorter than the path that has been found, Tthas only
three access nodes.

2.4 Locality Filters

There seem to be two basic approaches to transit node ro@img that starts with a lo-
cality filter L and then has to find a good set of transit no@efr which L works (e.g.,
[11]). The other approach starts withand then has to find a locality filter that can be effi-
ciently evaluated and detects as accurately as possiblih@rHecal search is needed (e.qg.,
Section 3).

In the latter case, one approach that we found very effective use the information
gained when computing the distance table for layet to define a locality filter for layet.
For example, we can specifyggometridocality filter in the following way. For each node

7

u € T;,1, we compute the radiug (u) of a circle aroundu that contains for each entry
d(u,v) in the layer{i + 1) table the meeting point of a bidirectional search betweand

v. Then, for nodes, v € 7,4, the locality filter is defined such that (u, v) is true iff the
cirles aroundu andwv touch or intersect. It is easy to see that this definition despvith
the requirements formulated at the beginning of this sactfai(u, v) cannot be computed
using layers< 4, then there will be a corresponding entry in the lagief- 1) distance table,
which implies that both the circle aroundand the circle around contain the meeting
point of a bidirectional search betweerandwv; thus, both circles touch or intersect so that
L;(u,v) is true.

This locality filter can be extended to work for all nodes bsefpomputing conservative
circle radii for arbitrary nodes asr’(v) := max {||v — ul||s + r*(u) : u € A;11(v)}, where
||v — u||, denotes the Euclidean distance betweemdv (Fig. 5). Note that even if we are
not able to store the information gathered during a precadation at layer + 1, it might
still make sense to run it in order to gather the more effedticality information.

%y
-

Fig. 5. Example for the extension of the geometric locality filteneTgrey nodes constitute the skt (v).

.y

2.5 Space Efficient Storage of Access Nodes

If all shortest paths from a nodeto its access noded(v) have to go over nodes from a
setM, we can exploit thatl(v) € A(M) := J,cp A(u). Moreover, if the nodes in/ are
‘close’ tov, we can expect that(M) is not too much bigger thad(v). Therefore, as long
as we can efficiently find/, it suffices to store access node information with a subsisteof
nodes. This subset might Be or a separator partitioning the graph into small pieces.

2.6 Outputting Complete Descriptions of the Shortest Paths

Generally, in a graph with bounded degree (e.g., a road mk}wsing a (near) constant
time distance oracle, we can output a shortest path &ram¢ in (near) constant time per
edge: Look for an edgés, s') such thati(s, s') + d(s',t) = d(s, t), output(s, s’). Continue
by looking for a shortest path fromi to t. Repeat untit is reached.

In the special case of transit node routing, we can speedisiptbcess by two mea-
sures. Suppose the shortest path uses the accessinaddss) andv € A(t). First, while

8

reconstructing the path fromto u, we can determine the next hop by considering all adja-
cent nodes’ of s and checking whethel(s, s') + d(s’, u) = d(s, u). Usually?, the distance
d(s',u) is directly available since is also an access node ©f Analogously, the path from

v tot can be determined.

Second, reconstructing the path framo v can work on the transit grapt[7] rather
than on the original graph. We can precompute informatiahdalows us to output the paths
associated with each edgedfi7 | in time linear in the number of edges@fthat it contains.
Note that long distance paths will mostly consist of thesepmputed paths so that the time
per edge can be made very small. This technique can be geedrad multiple layers.

3 Instantiation Using Highway Hierarchies

3.1 Preliminaries

For each node, we define some neighbourhood node/sét). Then, thehighway network
of a graphG = (V, F) is defined by its edge set: an edgev) € E belongs to the highway
network iff there are nodes ¢ € V' such that the edgé:, v) appears in the shortest path
(8,...,u,v,...,t) with the property that ¢ N(s) andu ¢ N(t). The size of a highway
network (in terms of the number of nodes) can be considenadalyced by a contraction
procedure: for each node we check dypassability criteriothat decides whethershould
bebypassed-an operation that creates shortcut edgesv) representing paths of the form
(u,v,w). The graph that is induced by the remaining nodes and emtibfighe shortcut
edges forms theore of the highway network.

A highway hierarchyf a graphG consists of several levels), G1, G, ..., G. Level O
corresponds to the original graph Level 1 is obtained by computing timghway network
of level 0, level 2 by computing the highway network of theecGt, of level 1 and so on.

Let us fix any rule that decides which element Dijkstra’s alfpon removes from the
priority queue when there is more than one queued elemehttiht smallest key. Then,
during a Dijkstra search from a given nodgall nodes are settled in a fixed order. The
Dijkstra rankrk,(v) of a nodev is the rank ofv w.r.t. this order.

3.2 Transit Nodes

Nodes on high levels of a highway hierarchy have the propgk#ithey are used on shortest
paths far away from starting and target nodes. ‘Far away'’efindd with respect to the
Dijkstra rank. Hence, itis natural to use (the core of) soevellX” of the highway hierarchy
for the transit node sef. Note that we have quite good (though indirect) control dfaer
resulting size of/ by choosing the appropriate neighbourhood sizes and thepipgate
value for K. For further layers, we use (the cores of) lower levels ofitiggaway hierarchy.
Note that there is a difference between the term ‘level’ (& highway hierarchy) and the
term ‘layer’ (of transit node routing).

% In a few cases—when is not an access node &f (which can only happen if the shortest paths in the graph arre n
unique)—, we have to consider all access nadesf s’ and check whethei(s, s") + d(s’,u’) + d(v',u) = d(s,u).
Note thatd(u’, v) can be looked up in the top distance table.

9

3.3 Access Nodes and Distance Tables

We use our highway hierarchy based code for many-to-martingpto compute the top level
distance table [13]. Roughly, this algorithm first performdependent backward searches
from all transit nodes and stores the gathered distancenafiton inbucketsassociated with
each node. Then, a forward search from each transit node stlaouckets it encounters
and uses the resulting path length information to updatéle t# tentative distances. This
approach can be generalised for computing distances atidaye. As a byproduct of the
distance table computations, we obtain geometric lochligrs as described in Section 2.4.

We use the forward approach from Section 2.3 to compute ttesamode sets. (In our
case, we do not perform Dijkstra searches, but highway keai8].)

Figure 6 summarises the setup used for running our algoritNenhave two variants.
Varianteconomicakims at a good compromise between space consumption, pesging
time and query time. Economical uses two layers and reagetstthe access node set and
the locality filter needed for the layer-1 query using infatran only stored with nodes in
75, i.e., for a layer-1 query with source nodewe build the unionJ,. 4, A(u) of all
layer-1 access nodes of all layer-2 access nodesmiletermine on-the-fly a layer-1 access
node set fors. Similarly, a layer-1 locality filter fors is built using the locality filters of
the layer-2 access nodes (cp. Section 2.4). Vaganierousaccepts larger distance tables
by choosingk = 4 (however using somewhat larger neighbourhoods for coctstigithe
hierarchy). Generous stores all information required fguery with every node. To obtain a
high quality layer-2 filter.;, the generous variant performs a complete layer-3 prepsiug
based on the core of level 1 and also stores a distance taléeyé 3.

Lgvel economical La)l/er Level generous Layer
4 1
3 L 2 2 2

Fig. 6. Representations of information relevant to highway higrmrtransit node routing. The chosen settings refer to the
travel time metric. Note that we use tberesof the given levels as transit node sets.

3.4 Queries

Queries are performed in a top-down fashion. For a givenygpair (s, t), first A(s) and
A(t) are either looked up or computed (cp. Section 3.3) deperatirige used variant. Then
table lookups in the top level distance table yield a firstsguerd(s, t). Now, if = L(s, t),
we are done. Otherwise, the same procedure is repeategdotieo. If evenl, (s, t) is true,
we perform a bidirectional highway hierarchy search that st@p if both the forward and
backward search radius exceed the upper bound computegkas thand 2. Furthermore,

10

the search need not expand from any nade 7, since paths going over these nodes are
covered by the search in layers 1 and 2. In the generous VYaharsearch is already stopped
at the level-1 core nodes, which form the access node setyfer B. Additional lookups in
the layer-3 table ensure the correctness of this variant.

3.5 Outputting Complete Descriptions of the Shortest Paths

The general methods from Section 2.6 can be applied rathectlyi to the highway-
hierarchy-based implementation in order to determine gotet® description of the shortest
path. In case of a local query, we can fall back on the routirsesl in the highway hierar-
chies approach [21].

In order to unpack the used shortcutise., determine the subpaths in the original graph
that correspond to the shortcuts), we use a rather so@tsticlata structure to represent
unpacking information for the shortcuts in a space-efficieay. In particular, we do not
store a sequence of node IDs that describe a path that congsfo a shortcut, but we store
only hop indices for each edgéu, v) on the path that should be represented, we store its
index minus the index of the first edge @f Since in most cases the degree of a node is
very small, these hop indices can be stored using only a fesy Bhe unpacked shortcuts
are stored in a recursive way, e.g., the description of d-2@hortcut may contain several
level-1 shortcuts. Accordingly, the unpacking proceduceks recursively.

To obtain a further speed-up, we cache the complete descrgpt-without recursions—
of all shortcuts that belong to the topmost level, i.e., feeste important shortcuts that are
frequently used, we do not have to use a recursive unpackogeg@ure, but we can just
append the corresponding subpath to the resulting path.

4 Experiments

4.1 Environment, Instances, and Parameters

The experiments were done on one core of a single AMD OpteroceBsor 270 clocked at
2.0 GHz with 8 GB main memory and>2 1 MB L2 cache, running SUSE Linux 10.0 (kernel
2.6.13). The program was compiled by the GNU C++ compiler24u&ing optimisation
level 3. Benchmark results can be found in Tab. 6 in Appendix A

We deal with two road networks. The network of Western Eutdes been made avail-
able for scientific use by the company PTV AG. Only the largésingest connected com-
ponent is considered. The original graph contains for edgk a length and a road category,
e.g., motorway, national road, regional road, urban sti&etassign average speeds to the
road categories, compute for each edge the average trawe| éind use it as weight. In
addition to thistravel time metric we perform experiments on variants of the European
graph with adistance metri@and theunit metric The network of the USA (without Alaska
and Hawaii) has been obtained from the TIGER/Line Files.[2ain, we consider only
the largest strongest connected component. In contras¢ BTV data, the TIGER graph is

" Here, we do not only mean the shortcut edges between samgt/aind the respective access node, but also the edges
of the transit graph that lie on the shortest path from thevéod to the backward access node.

8 14 countries: Austria, Belgium, Denmark, France, Germé#ajy, Luxembourg, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and the UK

11

undirected, planarised and distinguishes only betweerréaa categories. All graphhave
been taken from the DIMACS Challenge website [23]. Tablerfimarises the properties of
the used networks.

Table 1. Properties of the used road networks.

Europe USA
#nodes 18010173 23947 347
#directed edges 42560279 58333344
#road categories 13 4

average speeds [km/h] 10-130 40-100

In Section 4.2 we report only the times needed to compute libetesst path distance
between two nodes without outputting the actual route, evimiSection 4.3, we also give
the times needed to get a complete description of the shqddss.

Since it has turned out that a better performance is obtaitezh the preprocessing
starts with a contraction phase, we practically skip thé éosmstruction step (by choosing
neighbourhood sets that contain only the node itself) stthiefirst highway network virtu-
ally corresponds to the original graph. Then, the first resggd s the contraction of level 1 to
get its core. Note that compared to [3, 21], we use a slightlyroved contraction heuristic,
which sorts the nodes according to degree and then triegpsisythe node with the smallest
degree first.

The shortcut hops limit (introduced in [21]) is set to 10. ™edtings of the other pa-
rameters (some of them have been introduced in [2, 3]) caminedfin Tab. 2. Note that
when using the travel time metric (time), for all levels oéthierarchy, we use a constant
contraction rate and a constant neighbourhood sfZe—a different one for the economical
(eco) and the generous (gen) variant. For the distancé &fhidtunit metrics, we use linearly
increasing sequences foand H.

Table 2. Parameters. Note that we use tiogesof the given levels as transit node sets.

metric time dist unit
variant eco gen eco eco
levels of layers 1-2(-3) 5-3 4-2-1 64 5-3
neighbourhood sizél 60 110 90, 180, 270,.. 80, 100, 120,..
contraction rate 1.5 1.5 1.5,1.6,1.7,.. 15,1.6,1.7,..

4.2 Main Results

Preprocessing.Table 3 gives the preprocessing times for both road netwamkisall three

metrics; in case of the travel time metric, we distinguistwaen the economical and the
generous variant. In addition, some key facts on the resiiltise preprocessing, e.g., the
sizes of the transit node sets, are presented. It is integetst observe that for the travel

% Note that the experiments on the full TIGER graphs had beefonpeed before the final versions, which use a finer
edge costs resolution, were available. We did not repeaéxperiments since we expect hardly any change in our
measurement results except for a slight increase of the myernasumption since more bits are needed to store certain
path lengths.

12

time metric in layer 2 the actual distance table size is oblyus 0.1% of the size a naive
| 75| x | 75| table would have.

As expected, the distance metric yields more access nodagtile travel time metric
(a factor 2—3) since not only junctions on very fast roadsi¢tviare rare) qualify as access
nodes. The fact that we have to increase the neighbourhaedrsim level to level in or-
der to achieve an effective shrinking of the highway netwddads to comparatively high
preprocessing times for the distance metric.

The unit metric ranks somewhere in between. Although comguthortest paths in
road networks based on the unit metric seems kind of arlifisia observe a hierarchy in
this scenario as well: when we drive on urban streets, welgrieo much more junctions
than driving on a national road or even a motorway; thus, theber of road segments on a
path is somewhat correlated to the road type. This explaimsthe performance of the unit
metric does not strongly deviate from the travel time metric

Table 3. Statistics on preprocessing for the highway hierarchy @ggir. For each layer, we give the size (in terms of
number of transit nodes), the number of entries in the digtéable, and the average number of access nodes to the layer.
‘Space’ is the totabverheadof our approach.

layer 1 layer 2 layer 3
metric varian{ |7| |tabld |A|| |72| |table:| |A2|| |7Z3| |table|| space time
[x 109] [x 10°] [x 10°]|[B/node] [h]
time € 12111 147 6.1184379 30 4.9 - - 111 0:59
USA gen |10674 114 5.485410 204 48855407 173 244 3:25
dist eco |15399 237 17102352 41 10.9 - - 171 8:58
unit eco |13329 178 8.]136 546 39 6.0 - - 121 1:32
time € 8964 80 10.118356 20 5.p - - 110 0:46
EUR . gen |11293 128 9.823356 130 42954721 119 251 2:44
dist eco |11610 135 20.369775 31 131 - - 193 7:05
unit eco 2488 6 13.0 86928 HaA - - 123 1:25

Random Queries Using the Travel Time Metritable 4 summarises the average case per-
formance of transit node routing. For the travel time methe generous variant achieves
average query times more than two orders of magnitude loger highway hierarchies
alone [3]. At the cost of a factor 2.4 in query time, the ecomamvariant saves around

a factor of two in space and a factor of 3.5 in preprocessimg.tiFurther experiments on
various subgraphs of the US road network (see Tab. 7 in App&y)cdupport our claim that
we achieve almost constant query times irrespective ofieeas the road network: while
the sizes range between 264 346 and 23947 347 nodes, thetopesyary only from 3.7

to 5.0us for the generous variant.

Finding a good locality filter is one of the biggest challengé a highway-hierarchy-
based implementation of transit node routing. The valudam 4 indicate that our filter is
suboptimal: for instance, only 0.0064% of the queries perém by the economical variant
in the US network with the travel time metric would requireoadl search to answer them
correctly. However, the locality filtek, forces us to perform local searches in 0.278% of all
cases. The high-quality layer-2 filter employed by the gengrariant is considerably more
effective, still the percentage of false positives is at8fi#o.

13

Random Queries Using the Distance Metrior the distance metric, the situation is worse.
Only 92% and 82% of the queries are stopped after the top leaebeen searched (for the
US and the European network, respectively). This is dueddettt that we had to choose the
cores of levels 6 and 4 as layers 1 and 2 since the shrinkirtgediighway networks is less
effective so that lower levels would be too big. It is impaitteo note that we concentrated on
the travel time metric—since we consider the travel timerimatore important for practical
applications—, and we spent comparatively little time togwur approach for the distance
metric. For example, a variant using a third layer (namelgle6, 4, and 2 as layers 1, 2, and
3), which is not yet supported by our implementation, seentmetpromising. Nevertheless,
the current version shows feasibility and still achievesrmaprovement of a factor of 71
and 56 (for the US and the European network, respectivelg) bighway hierarchies [21,
Tab. 5, with distance table optimisation].

Table 4. Performance of transit node routing with respect to 10 0@r@ddomly choseifs, t)-pairs. Each query is per-
formed in a top-down fashion. For each layewe report the percentage of the queries that are not andwereectly in
some layeK ¢ and the percentage of the queries that are not stoppedaftsi l(i.e., Li(s, t)).

layer 1 [%] layer 2 [%] layer 3 [%0]
metric varianfwrong cont'd wrong contd wrong cont'dlquery time
time € 0.14 1.13 0.0064 0.2780 — - 11.5us
USA gen 0.11 0.80 0.0014 0.0138 0.00014 0.00016 4.9us
dist eco 157 8.10 0.0489 2.2352 - - 87.5us
unit eco 0.42 2.15 0.0115 0.4800 - - 18.7us
ime € 0.54 2.87 0.0092 0.5843 - - 13.4us
EUR gen 0.26 1.35 0.0016 0.0190 0.00019 0.00028 5.6us
dist eco 4.68 18.32 0.1761 4.2764 - — | 107.4us
unit eco 1.87 11.52 0.0204 2.2199 - - 23.1us

Local Queries Using the Travel Time Metri&ince the overwhelming majority of all cases
are handled in the top layer (about 99% in case of the US n&jwibre average case per-
formance says little about the performance for more loc&rigs which might be very
important in some applications. Therefore we use the medlevdloped in [2] to get more
detailed information about the query time distributionsdaeries ranging from very local
to global. Figure 7 gives for each variant (economical/gen®) and for each valueon the
x-axis a distribution for 1 000 queries with random startiogps and the target nodewith
Dijkstra rank rk(¢) = r. The distributions are represented as box-and-whiskes [id]:
each box spreads from the lower to the upper quartile ancowithe median, the whiskers
extend to the minimum and maximum value omitting outlierkjol are plotted individu-
ally. (Appendix A contains analogous figures for the Europeetwork with the travel time
metric and for both networks with the distance metric.)

For the generous approach, we can easily recognise thelélyess of transit node rout-
ing with small transition zones in between: For ragks-22* we usually have-L(s, t) and
thus only require cheap distance table accesses in layer tafks2'2-2'6 we need addi-
tional lookups in the table of layer 2 so that the queries getesvhat more expensive. In this
range, outliers can be considerably more costly, indigatiat occasional local searches are
needed. For small ranks we usually need local searches dittbadl lookups in the table
of layer 3. Still, the combination of a local search in a vamyeadl area and table lookups in
all three layers usually results in query times of only alitiyts.

14

In the economical approach, we observe a high variance irydimes for rank2'°—
216 In this range, all types of queries occur and the differdreteveen the layer-1 queries
and the local queries is rather big since the economicantidoes not make use of a third
layer. For smaller ranks, we see a picture very similar tacblaighway hierarchies with
guery time growing logarithmically with Dijkstra rank.

o o
o _|] L O
o o
= . =
o . 1§ 8
8 o A EIEL X E =
™ . | H] o ™
7 ai . EI Lo O economical
= S | I B generous - 8
g - o H Q! —
- TEEEE
- g_ | H] : X @ _g
oy B.'l"" o8 o
5 o 'mom .l 8 V aeé o
O Q& 'l'.l 393 S
n + Tg_eas'l |
o o erriopgege 8.8 88 | o
X : : : ! J--:.: I|I|:gJ-EJ.TJ.§J.g
T A lgrgiidiogtiel Low
° L B Be el ‘nen
+ (o} n : n n n n n n n

I I
2° 2°

I I I I I I I I I
211 912 513 514 515 516 517 Hl8 518 520 H21 522 523 H24

N
~
N
©
N
©
N
i
S

Dijkstra Rank
Fig. 7. Query times for the USA with the travel time metric as a funictdf Dijkstra rank.

4.3 Outputting Complete Descriptions of the Shortest Paths

Table 5 deals with the traversal of a complete descriptiothefshortest path based on the
method described in Section 3.5. Currently, we provide aiefit implementation only for
the case that the path goes through the top layer. In all otsss, we just perform a normal
highway search and invoke the methods from [21]. The effadhe average times is very
small since more than 99% of the queries are correctly arsivgsing only the top search
(in case of the travel time metric; cp. Tab. 4).

We give the additional preprocessing time and the additidis& space for the unpack-
ing data structures. Furthermore, we report the additibmed that is needed to determine
a complete description of the shortest path and to tratfeitssumming up the weights of
all edges as a sanity check—assuming that the distance basrgiready been performed.
That means that the total average time to determine a shp&tsis the time given in Tab. 5
plus the query time given in Tab. 4.

Table 5. Additional preprocessing time, additional disk space amerytime that is needed to determine a complete de-
scription of the shortest path and to traverse it summindhapueights of all edges—assuming that the query to determine
its lengths has already been performed. Moreover, the ggeramber of hops—i.e., the average path length in terms of
number of nodes—is given. These figures refer to experinmntse graphs with the travel time metric using the generous
variant.
preproc. space query #hops

[min] [MB] [ps] (avg.)
USA| 4:04 193 258 4537
EUR ‘ 7:43 188 155 1373

10 Note that we daot traverse the path in the original graph, but we directly sbarassembled description of the path.

15

5 Conclusions and Future Work

We have demonstrated that query times for quickest pathsaith metworks can be reduced
by another two orders of magnitude compared to the bestqusvechniques—highway hi-
erarchies and reach based routing. Building on highwatséres, this can be achieved us-
ing a moderate amount of additional storage and precomepnt&aradoxically, the biggest
problem for the application of transit node routing may bet this far too fast for classical
route planning. Already the previous best techniques hadygime comparable to the time
needed for just traversing the quickest path, let alone comicating or drawing it. Still,
in applications like traffic simulation or optimisation fmlems in logistics, we may need a
huge number of shortest path distances and only a few adtogkst paths.

Although conceptually simple, an efficient implementatditransit node routing has so
many ingredients that there are many further optimisataportunities and a large spec-
trum of trade-offs between query time, preprocessing tene, space usage. For example,
in order to reduce the latter, we could apply the generic owfihom Section 2.5 to our
highway-hierarchy-based implementation: when access nddrmation is stored only at
the core of level 1, the size of the access node data will becestiby a factor of six. For
reducing the average query time, we could try to precompifiternation analogous to edge
flags or geometric containers [19, 20, 18] that tells us wiacbess nodes lead to which
regions of the graph.

There are many interesting ways to choose transit nodesxaonple nodes with high
node reach [4,5] could be a good starting point. Here, we a=ctty influence|7 |, and
the resulting reach bound might help defining a simple logélter. However, it seems that
geometric reach or travel time reach do not reflect the infgeneous density of real world
road networks. Hence, it would be interesting if we couldcedfitly approximate reach
based on the Dijkstra rank.

Another interesting approach might be to start with somalitycfilter that guarantees
uniformly small local searches and then to view it as an ojgttion problem to choose a
small set of transit nodes that cover all the local searchespa

Parallel processing can easily be used to accelerate pex®ing, or to execute many
queries in parallel. With very fine grained multi-core pbaidm it might even be possible to
accelerate an individual query. Forward local search, Wwaok local search, and each table
lookup are largely independent of each other.

Acknowledgements

We would like to thank Holger Bast, Stefan Funke, Kirill Ni&r, and Dorothea Wagner for
interesting discussions on transit node routing and TinmgBiann for work on visualisation
tools.

References

1. Dijkstra, E.W.: A note on two problems in connexion witkaghs. Numerische Mathemati(1959) 269-271

2. Sanders, P., Schultes, D.: Highway hierarchies hastact skortest path queries. In: 13th European Symposium on
Algorithms. Volume 3669 of LNCS., Springer (2005) 568-579

3. Sanders, P., Schultes, D.: Engineering highway hiei@schn: 14th European Symposium on Algorithms. Volume
4168 of LNCS., Springer (2006) 804-816

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Gutman, R.: Reach-based routing: A new approach to stgréeh algorithms optimized for road networks. In: 6th
Workshop on Algorithm Engineering and Experiments. (2020)-111

Goldberg, A., Kaplan, H., Werneck, R.: Reach for. Efficient point-to-point shortest path algorithms. In: kkshop

on Algorithm Engineering & Experiments, Miami (2006) 12431

Thorup, M.: Compact oracles for reachability and appr@te distances in planar digraphs. In: 42nd IEEE Sympo-
sium on Foundations of Computer Science. (2001) 242—-251

Fakcharoenphol, J., Rao, S.: Planar graphs, negatightwailges, shortest paths, and near linear time. In: 42nH IEE
Symposium on Foundations of Computer Science. (2001) 2B2—-2

Schulz, F., Wagner, D., Zaroliagis, C.D.: Using multidegraphs for timetable information. In: 4th Workshop on
Algorithm Engineering and Experiments. Volume 2409 of LNCSpringer (2002) 43-59

Muller, K.: Design and implementation of an efficient aichical speed-up technique for computation of exact
shortest paths in graphs. Master’s thesis, UniverstédsKare (2006) supervised by D. Delling, M. Holzer, F. Schulz
and D. Wagner.

Delling, D., Holzer, M., Mller, K., Schulz, F., Wagnéb.: High-performance multi-level graphs. In: 9th DIMACS
Implementation Challenge [23]. (2006)

Bast, H., Funke, S., Matijevic, D.: TRANSIT—ultrafabbstest-path queries with linear-time preprocessing9th:
DIMACS Implementation Challenge [23]. (2006)

Bast, H., Funke, S., Matijevic, D., Sanders, P., Schulle: In transit to constant time shortest-path querieoaur
networks. In: Workshop on Algorithm Engineering and Expemnts. (2007)

Knopp, S., Sanders, P., Schultes, D., Schulz, F., WaBne€omputing many-to-many shortest paths using highway
hierarchies. In: Workshop on Algorithm Engineering and &xmpents. (2007)

Wagner, D., Willhalm, T.: Drawing graphs to speed up sstrpath computations. In: 7th Workshop on Algorithm
Engineering and Experiments. (2005)

Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basistfie heuristic determination of minimum cost paths. IEEE
Transactions on System Science and Cybernéd(®s(1968) 100-107

Goldberg, A.V., Harrelson, C.: Computing the shorteshpA™ meets graph theory. In: 16th ACM-SIAM Symposium
on Discrete Algorithms. (2005) 156-165

Goldberg, A.V., Werneck, R.F.: An efficient external nmemshortest path algorithm. In: Workshop on Algorithm
Engineering and Experimentation. (2005) 26—40

Wagner, D., Willhalm, T.: Geometric speed-up technigiee finding shortest paths in large sparse graphs. In: 11th
European Symposium on Algorithms. Volume 2832 of LNCS. jigmr (2003) 776787

Lauther, U.: An extremely fast, exact algorithm for fimglshortest paths in static networks with geographical back
ground. In: Geoinformation und Mobilitat — von der Forsngwur praktischen Anwendung. Volume 22., IfGl prints,
Institut fir Geoinformatik, Miinster (2004) 219-230

Mbohring, R.H., Schilling, H., Schiitz, B., Wagner, Willhalm, T.: Partitioning graphs to speed up Dijkstra'ga
rithm. In: 4th International Workshop on Efficient and Exipsgntal Algorithms. (2005) 189-202

Delling, D., Sanders, P., Schultes, D., Wagner, D.: W hierarchies star. In: 9th DIMACS Implementation
Challengeht t p: / / ww. di s. uni ronmal. it/ ~chal | enge9/ . (2006)

U.S. Census Bureau, Washington, DC: UA Census 2000 TIGE®Files. htt p: / / www. census. gov/ geo/
www/ ti ger/tigerual/uatgr2k. htm (2002)

9th DIMACS Implementation Challenge: Shortest Patttst. p: / / ww. di s. uni romal. it/ ~chal | enge9/
(2006)

R Development Core Team: R: A Language and EnvironmentSfatistical Computing. ht t p: / / www.
r-project.org (2004)

17

A Further Experiments

Query Time [us]

300 1000

10 20 40 100

5

Table 6. DIMACS Challenge [23] benchmarks for US (sub)graphs (quieng [ms]).

metric
graph| time dist
NY 29.6 28.5
BAY 34.7 33.3
COL 51.5 49.0
FLA | 1348 120.5
NwW | 161.1 146.1
NE 225.4 197.2
CAL| 2911 235.4
LKS | 461.3 366.1
E 681.8 536.4
W |1211.2 988.2
CTR|4485.7 3708.1
USA|5355.6 4509.1
T 9 e
e g ! .
Oii.ga A 1 183,
ﬁ - , 1 H : 1
i | L:J I_?Io: é) O economical
IEﬁH%.§:8*é go °llo B generous
=) [|
= ! | L | (o]
5-='i'5"" 5-?33“”0
LN | 0 TSTéH@QSQHEE'IH§
AR 8 igig: :6:878:98%
A O L SU B RO BB
. i © . .+ i+ B8 B8 8 8 8 &

) I—
o
N
(2]
N
~
N]
o
N
©
N
),
S)
N
2. —
=

212 213 214 215 216 217 218 219 220 221 222 223 224

Dijkstra Rank

Fig. 8. Query times for Europe with the travel time metric as a fumrttf Dijkstra rank.

18

300 1000

10 20 40 100

5

Query Time [us]

1000 3000

300

100

10 20 40

@D

aao

L D))

-
F-----CO- @0
b - - - - e

E IIH.'I
E :Z ,I"HI T
aH N L RN
L Lt
HIH!::E:EL*LLDEurope
R N E USA
| vl J'_

F----{O- @

F--0E- ..
Fo---{O- @
r - -0H- @D

25 26 27 28 29 210 211 212 213 214 215 216 217 218

Dijkstra Rank

Fig. 9. Query times for the distance metric as a function of Dijksénak.

Table 7. Results for US subgraphs with travel time metric using theegeus variant.

preproc.
graph #nodeLtime [min]
NY 264 34 4
BAY 32127 2
COL 43566 3
FLA 107037 7
NW 120794 7
NE 152445 16
CAL 189081 15
LKS 275811 26
E 359862 30
W 626210 47
CTR 1408181 148
USA 2394734 205

19

total disk query
space [MB] time [is]
147 4.6
105 4.2
156 4.7
418 3.8
325 3.7
578 4.1
554 3.8
890 4.2
1159 4.4
1801 4.2
4169 5.0
6108 4.9

1000 3000

300

100

10 20 40

