
Fast and Exact Shortest Path Queries

Using Highway Hierarchies

Dominik Schultes

July 2005

Master-Arbeit

Fachrichtung 6.2 – Informatik, Universität des Saarlandes
angefertigt nach einem Thema von Prof. Dr. Kurt Mehlhorn, Max-Planck-Institut für Informatik

unter Betreuung von Prof. Dr. Peter Sanders, Universität Karlsruhe (TH)

In Erinnerung an
meine Oma

Acknowledgements

I would like to thank my supervisor Peter Sanders for the numerous interesting discussions,
his encouragement and support. Domagoj Matijevic and Jens Maue proofread a preliminary
and the final version of my thesis, respectively. Their suggestions were of great value. Frank
Schulz helped with the compilation of the section on relatedwork. Martin Holzer, Domagoj
Matijevic, Frank Schulz, and Thomas Willhalm also assistedwith data and tools for pro-
cessing graphs. Last but not least, I would like to thank KurtMehlhorn for his willingness
to examine my thesis.

This thesis is based on [25], a joint work with Peter Sanders.
For future developments refer tohttp://www.dominik-schultes.de/hwy/.

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Saarbrücken, im Juli 2005

http://www.dominik-schultes.de/hwy/

Abstract

The computation of shortest paths in a graph is a well-known problem in graph theory.
One of the most obvious practical applications is route planning in a road network, i.e.,
finding an optimal route from a start location to a target location. We assume that a given
road network does not change very often and that there are many source-target queries on
the same network. Therefore, it pays to invest some time for apreprocessing step that
accelerates all further queries.

We present a new speedup technique for route planning that exploits the hierarchy in-
herent in real-world road networks. In a preprocessing step, we investigate the given road
network in order to extract and prepare a hierarchical representation. Our route planning
algorithm then takes advantage of this data. It is an adaptation of the bidirectional version
of DIJKSTRA’s algorithm, massively restricting its search space.

In several experiments, we concentrate on the computation of fastest routes in Western
Europe and the USA. Both networks consist of about 20 millionnodes each. Our algorithm
preprocesses these networks in a few hours using linear space. Queries then take around
eight milliseconds to produce optimal routes. This is more than 2 000 times faster than using
DIJKSTRA’s algorithm. There are numerous possibilities to further improve and extend our
approach.

Zusammenfassung

Die Berechnung kürzester Pfade in einem Graphen ist ein bekanntes Problem aus der Gra-
phentheorie. Eine der naheliegendsten praktischen Anwendungen ist die Routenplanung in
einem Straßennetz, also die Bestimmung einer optimalen Route von einem Start- zu einem
Zielort. Wir gehen davon aus, dass ein gegebenes Straßennetz sich nicht sehr oft ändert und
dass viele Start-Ziel-Suchen im gleichen Straßennetz durchgeführt werden. Dadurch lohnt
es sich, zunächst etwas Zeit in einen Vorverarbeitungsschritt zu investieren, der dann alle
nachfolgenden Suchanfragen beschleunigt.

Für das Problem der Routenplanung stellen wir eine neue Beschleunigungstechnik vor,
die die hierarchischen Eigenschaften von realen Straßengraphen ausnutzt. In einem Vorver-
arbeitungsschritt untersuchen wir das gegebene Straßennetz, um eine hierarchische Darstel-
lung zu gewinnen und aufzubereiten. Der Routenplanungsalgorithmus profitiert dann von
den gewonnenen Daten. Es handelt sich dabei um eine Anpassung der bidirektionalen Vari-
ante des Algorithmus von DIJKSTRA, die den Suchraum deutlich einschränkt.

In mehreren Experimenten beschäftigen wir uns mit der Berechnung von schnellsten
Routen in Westeuropa und den USA. Beide Netze bestehen aus jeweils ca. 20 Millionen
Knoten. Die Vorverarbeitung dieser Straßennetze dauert wenige Stunden, wobei nur ein lin-
earer zusätzlicher Platzbedarf anfällt. Suchanfragen dauern dann ungefähr acht Millisekun-
den, um optimale Routen zu bestimmen. Dies ist mehr als 2 000 mal schneller als die Ver-
wendung von DIJKSTRAs Algorithmus. Es gibt zahlreiche Möglichkeiten, diesen Ansatz
weiter zu verbessern und auszubauen.

Contents

1 Introduction 1

2 Preliminaries 8
2.1 Shortest Paths and DIJKSTRA’s Algorithm 8
2.2 Highway Hierarchy .10

3 Construction 14
3.1 Fast Construction of the Highway Network 14
3.2 Speeding up Construction .. 20
3.3 Contraction of the Highway Network 21

4 Query 24
4.1 Multilevel Query Algorithm .. 24
4.2 Collapse of the Vertical Dimension 29
4.3 Abort-on-Success .30

5 Implementation 33
5.1 Data Structures .33
5.2 Construction .37
5.3 Query .39

6 Experiments 40
6.1 Environment and Instances .. 40
6.2 Parameters .42
6.3 Multilevel Queries .45

7 Discussion 50

A Canonical Shortest Paths 55
A.1 Modifications of DIJKSTRA’s Algorithm 55
A.2 FIFO Priority Queues .56

i

Chapter 1

Introduction

Motivation

Finding an optimal route from A to B is an everyday problem. Since using a map to aid
the route planning is rather inconvenient and does not necessary lead to an optimal route,
during the last years, many applications and tools were developed that try to determine good
routes in order to achieve a reduction of travel distance, time and costs. Two representative
examples are route planning services provided in the internet and car navigation systems.
There is a great interest inefficientroute planning methods: in the former case, due to the
huge amount of requests that are sent to the server, and in thelatter case, due to the limited
computing power of car navigation systems. Furthermore, for obvious reasons, there is a
great interest in methods that do not only find approximations, butexactsolutions.

A road network can easily be represented as agraph, i.e., as a collection of nodesV
(junctions) and edgesE (roads) where each edge connects two nodes. Each edge is assigned
a weight, e.g. the length of the road or an estimation of the time needed to travel along the
road. In graph theory, the computation ofshortest1 pathsbetween two nodes is a classical
problem. From a worst case perspective, the problem has largely been solved by DIJKSTRA

in 1959 [9] who gave an algorithm that finds all shortest paths from a starting nodes using
at mostm + n priority queue operations for a graphG = (V, E) with n nodes andm edges.
However, these bounds are not satisfying in practice when wedeal with very large road
networks. There are several aspects that suggest that we cando better:

1. In a sense, DIJKSTRA’s algorithm is an overkill since it computes the shortest paths
from a given nodes to all nodesv ∈ V and not only toonegiven nodet. This can
be improved by stopping DIJKSTRA’s algorithm as soon as the shortest path tot is
found, but still the shortest paths froms to all nodesv that are closer tos thant are
determined (Fig.1.1).

2. We assume that a given road network does not change very often and that there are
many source-target queries on the same network. Therefore,it can pay to invest some
time for apreprocessingstep that accelerates all further queries.

3. We do not deal with general graphs, but with road networks,which have certain prop-
erties. For instance, it is quite unusual for a node in a road network to have degree

1Note that, depending on the chosen edge weight, ‘shortest’ can refer not only to ‘spatial distance’, but
also, for instance, to ‘travel time’.

1

ts

Figure 1.1:Schematic representation of the search space of DIJKSTRA’s algorithm.

five or more, i.e., a road network is a verysparsegraph. Furthermore, road networks
are almostplanar (because there are only a few bridges and tunnels in comparison
to the total number of road segments). Usually, alayout is given that is based on the
geographic coordinates of each node. Moreover, road networks exhibithierarchical
properties: for example, there are ‘more important’ streets (e.g. motorways) and ‘less
important’ ones (e.g. urban streets).

Specification of the Goals

On a givenlarge road network, we allow afast preprocessingstep in order to makefast
source-target queriespossible. The queries returnexactsolutions. Low space consump-
tion is a constraint. Furthermore, the method should bescale-invariant, i.e., it should be
optimised not only for long paths. In other words, the running time of the computation of
a shortest path (e.g. from Karlsruhe to Saarbrücken) in a large graph (e.g. Western Europe)
should be not much higher than the running time of the same computation in a smaller graph
(e.g. Germany).

Related Work

There is so much literature on shortest paths and preprocessing that we can only highlight se-
lected results that help to put our work into perspective. For recent, more detailed overviews
we refer to [14, 44, 11]. In the following,speeduprefers to a comparison of average query
times to those of the unidirectional variant of DIJKSTRA’s algorithm that stops when the
target is found. These speedup factors provide an indication of the performance of each
approach. However, it is important to note that the speedupsare likely to depend on the size
and structure of the graph that is used for the experiments. Therefore, since each author uses
different graphs, these numbers have to be interpreted withcaution.

Without Preprocessing. The main focus oftheoretical work on shortest paths has been
how to reduce or avoid the overhead of priority queue operations. The original version of
DIJKSTRA’s algorithm [9] runs in O(n2). This bound has been improved several times,
e.g., toO(m log n) using binary heaps [45], O(m + n log n) using Fibonacci heaps [12],
O(m log log n) [30, 33], andO(m+n log log n) using a sophisticated integer priority queue
[35, 37] that supportsdeleteMinoperations inO(log log n) and all other operations in con-
stant time. For integer edge weights in a range from 0 toC, DIAL proposed anO(m + nC)

2

algorithm using buckets [8]. This bound has been improved toO(m log log C) [41], O(m +
n
√

log C) [1], andO(m+n log log C) [35, 37]. Linear time algorithms for the single source
shortest path problem have been presented forplanar [18] andundirectedgraphs [31, 32].
MEYER [21] gives an algorithm that works in linear time with high probability on an arbi-
trary directed graph with random edge weights uniformly distributed in the interval[0, 1].
However, so far, no linear time algorithm (with respect to the worst case) for directed graphs
is known.

Experimental studies [6] indicate that inpractice even very simple priority queues like
binary heaps only induce a factor 2–3 overhead compared to highly tuned ones. In particular,
it does not pay to acceleratedecreaseKeyoperations since they occur comparatively rarely
in the case of sparse road networks.

Bidirectional searchis a classical technique that has the potential to give a speedup of
up to a factor of two. It simultaneously searches forward from s and backwards fromt until
the search frontiers meet (Fig.1.2).

ts

Figure 1.2:Schematic representation of the search space of the bidirectional version of
DIJKSTRA’s algorithm.

A∗ search[16], a heuristic search technique from the field of Artificial Intelligence,
is a goal-directedapproach, i.e., it adds a sense of direction to the search process. For
each vertexv, a lower boundd′(v, t) on the distance tot is required. In each step of the
search process, the nodev is selected that minimisesd(s, v) + d′(v, t). This approach can
be combined with bidirectional search [23]. The performance of theA∗ search depends on
a good choice of the lower bounds. If the geographic coordinates of the nodes are given, the
Euclidean distance fromv to t can be used as lower bound. This leads to a simple, fast, and
space efficient method, which, however, gives only a small speedup, in particular when the
edge weights are not Euclidean distances, but, for instance, travel times.

With Preprocessing. An extreme case would be to precompute all shortest paths. This
allows constant time queries, but is prohibitive for large graphs due to space and time con-
straints. In general, there is a trade-off between the time needed forprecomputation, the
spaceneeded for storing the precomputed information, and the resulting query time.

Perhaps the most interestingtheoretical results on route planning are algorithms for
planar graphs that might be adaptable to route networks since thoseare almost planar. Us-
ing O(n log3 n) preprocessing time, query timeO(

√
n log2 n) can be achieved [10] for di-

rected planar graphs without negative cycles. In a planar graph with integer edge weights
in a range from 0 toC, queries accurate within a factor(1 + ε) can be answered in time
O(log log(nC)+1/ε) usingO(n(log n)(log(nC))/ε) space andO(n(log n)3(log(nC))/ε2)
preprocessing time [34, 36].

For undirectedgraphs that are not necessarily planar, THORUP and ZWICK presented a
distance oracle [38, 39] that answers queries in constant time usingO(m

√
n) expected time

for preprocessing andO(n
√

n) space; theapproximatedistance returned is accurate within

3

a factor of three. Furthermore, they show that any approximate distance oracle fordirected
graphs must use at leastΩ(n2) bits of storage on at least onen-vertex graph. Inpractice, the
graphs used for the USA or Western Europe already have around20 million nodes so that
significantly superlinear preprocessing time or even slightly superlinear space is prohibitive.
Hence, the above approaches seem not directly applicable tothe problem at hand.

In [13, 14], an algorithm is presented that is based onA∗ search,landmarks, and the
triangle inequality. After selecting a small number of landmarks, for all nodes, the distances
to and from each landmark are precomputed. For two nodesv andt, the triangle inequal-
ity yields for each landmarkℓ a lower boundd′(v, t) := d(ℓ, t) − d(ℓ, v) ≤ d(v, t). The
maximum of these lower bounds is used during anA∗ search. For global queries, about 16
global shortest path computations during preprocessing suffice to achieve a speedup factor
of around 16 in a road network consisting of about 6.7 millionnodes. However, the land-
mark method needs a lot of space – one distance value for each node-landmark pair. It is
also likely that for real applications each node will need tostore distances to different sets
of landmarks for global and local queries. Hence, landmarkshave very fast preprocessing
and reasonable speedups but consume too much space for very large networks.

Reach based routing[15] excludes nodes from consideration if they do not contribute
to any path long enough to be of use for the current query. Speedups up to ten (17 when
combined withA∗) are reported for graphs with about 400 000 nodes using more than two
hours preprocessing time. Our method is an order of magnitude faster in terms of both query
and preprocessing time.

High speedups are reported forgeometric containers[27, 42, 44]. For each edgee,
the setS(e) is determined that contains all nodes that can be reached on ashortest path
starting withe. Then, a simple geometric containerC(e) (e.g. a rectangular bounding box)
is computed that contains at least all elements ofS(e). During the execution of DIJKSTRA’s
algorithm, an edgee can be ignored if the target node lies outsideC(e). The preprocessing
step of this approach requires a very expensive all-pairs shortest paths computation.

A related method, which achieves speedups of up to a factor of1 400 in a road network
with about one million nodes [19], is based onedge flags[20, 19, 22]. The graph is parti-
tioned intok regions. For each edgee and each regionr, one flag is computed that indicates
whethere lies on a shortest path to a node in regionr. In order to determine the edge flags,
for each edge that leaves a region, one shortest paths computation is performed. After these
preprocessing steps have been completed, DIJKSTRA’s algorithm can take advantage of the
edge flags: edges have to be relaxed only if the flag of the region that the target node be-
longs to is set. Note that the preprocessing costs of this approach are better than those of the
geometric containers. Still, the edge flag method is probably too slow when it has to deal
with very large road networks consisting of several millions of nodes since the preprocess-
ing of less than half a million nodes already takes more than two hours [19]. An extension
to multiple levels, which reduces the space consumption, issuggested in [22].

The previous approach closest to ours is theseparator based multilevel method[27, 28,
26]. The idea is to partition the graph into small subgraphs by removing a (hopefully small)
set of separator nodes. These separator nodes together withedges representing precomputed
paths between them constitute the next level of the graph. Queries then only need to search
in the partitions ofs and t and in the higher level graph. This process can be iterated.
Speedups around ten are reported for railway transportation problems [28] and for road
networks [44] that contain mostly nodes with degree two. Disadvantages compared to our

4

method are that performance depends on very small (and thus hard to find) separators and
that the higher level graphs get quite dense so that going to many levels quickly reaches a
point of diminishing return. In contrast, our method, whichis based on a different notion
of multilevel graphs, has a very simple definition of what constitutes the higher level graphs
and our higher level graphs remain sparse.

Many of the above techniques can be combined. In [27], a combinationof a special
kind of geometric container, the separator based multilevel method, andA∗ search yields
a speedup of 62 for a railway transportation problem. In [17], combinations ofA∗ search,
bidirectional search, the multilevel method, and geometric containers are studied: Depend-
ing on the graph type, different combinations turn out to be best. For real-world graphs,
a combination of bidirectional search and geometric containers leads to the best running
times.

In contrast to our method, some approaches (e.g. geometric containers) require for each
node its geographic coordinates, which might not always be available. However, there are
studies that indicate that it is possible togenerate a layoutof a graph so that speedup tech-
niques can be applied successfully. In some cases (where an original layout is available),
generated layouts even result in a slightly higher speedup than the original layout does. [4, 5]
deals with the special case of a timetable information system; a more general approach is
presented in [43].

Our Approach

Let us consider the following naive route planning method:

1. Look for the next reasonable motorway.

2. Drive on motorways to a location close to the target.

3. Leave the motorway and search the target starting from themotorway exit.

Of course, it is true that this fast method does not always yield the optimal solution, but,
in many cases, we obtain a reasonable approximation (provided that source and target are
not too close together and that we travel in a country whose motorway network is well
developed). This naive route planning method is based on a simple rule of thumb: when we
are on our way to a remote target and pass by a city on a motorway, it usually does not pay
to leave the motorway and look for a faster way through the city; in other words, usually, we
can safely ignore all ‘less important’ city streets and stick to the ‘more important’ motorway
since weknow that the motorway provides the fastest way. The approach that is used by
some commercial route planning systems is based on the aboveidea:

1. Search from the source and target node (‘bidirectional’) within a certain radius (e.g.
20 km), considerall roads.

2. Continue the search within a larger radius (e.g. 100 km), consider onlynational roads
and motorways.

3. Continue the search, consider onlymotorways.

Note that the actual implementations of this approach are more sophisticated than our simpli-
fied presentation suggests. Again, we get a method which is fast, but still returns inaccurate

5

results – albeit better ones than those of the naive route planning method. We cannot guar-
antee exact results because we cannot exclude that sometimes it actually might be better to
leave a ‘more important’ road (e.g. a motorway) and use some ‘less important’ street (e.g. a
local road) that provides some kind of shortcut. In other words, a street that we considered
to be ‘less important’ might turn out to be ‘more important’ than its category suggests. This
observation is the starting point of our approach.

Similar to the commercial approach, we first perform some kind of local searchfrom s
and fromt and then switch to searching in ahighway networkthat is much thinner than the
complete graph (Fig.1.3). Our main contribution is the fact that we define the notion of local

s t

Figure 1.3:Schematic representation of the local search (darkcolours) and the search in
the highway network (light colours).

searchandhighway networkappropriately so thatexactshortest paths can be computed.
This is very simple. We define local search to be a search that visits theH closest nodes
from s (or t) whereH is a tuning parameter. This definition already fixes the highway
network. An edge(u, v) ∈ E should be a highway edge if there are nodess andt such that
(u, v) is on the shortest path froms to t, v is not within theH closest nodes froms, andu is
not within theH closest nodes fromt.

At first glance it might appear that a (prohibitively expensive) all-pairs shortest path
computation is needed to find the highway network. However, we will show that each high-
way edge is also within some local shortest path treeB rooted at somes ∈ V such that all
leaves ofB are ‘sufficiently far away’ froms.

So far, the highway network still contains all the nodes of the original network. However,
we can prune it significantly: Isolated nodes are not needed.Trees attached to a biconnected
component can only be traversed at the beginning and end of a path. Similarly, paths con-
sisting of nodes with degree two can be replaced by a single edge. The result is acontracted
highway networkthat only contains nodes of degree at least three.

We expect that search in the two-level network defined above can already be used to
achieve speed comparable to some currently used commercialsystems without sacrificing
exactness. However, we can continue, define local search on the highway network, find a
‘superhighway network’, contract it, and so on. We arrive ata multilevel highway network
– highway hierarchy. Now, the query algorithm works in the following way: first, perform a
local search in the original graph (level 0); second, switchto the highway network (level 1)
and perform a local search in the highway network; then, switch to the next level of the
highway hierarchy, and so on. Figure1.4 gives a schematic representation of the search
space, Fig.1.5a real-world example.

Outline
Chapter2 gives a more formal definition of thebasic conceptsused in this paper. In Chap-
ter 3, we deal with the efficientconstructionof the highway hierarchies. First, we give an
algorithm that computes the exact highway network of a givengraph. Then, we introduce

6

ts

Figure 1.4:Schematic representation of the search in level 0 (darkcolours), level 1 (light
colours), and level 2 (very light colours) of a highway hierarchy.

Figure 1.5:Search space for a query from Limburg (a German city) to a location 100 km
east of the source node. Source and target are marked by a circle. The thicker the line, the
higher the search level. Note that edges representing long subpaths are not drawn as direct
shortcuts, but by showing the actual geographic route taken.

a tuning parameter that allows to speed up the construction at the price of no longer com-
puting the actual highway network, but a superset of it. Finally, we show how the highway
network can be contracted. Note that the construction algorithm only works if the shortest
path search performed during precomputation computes not just arbitrary shortest paths, but
canonical shortest paths, i.e., the algorithm has to break ties in such a way that subpaths
of shortest paths that are determined by the search are also determined. In AppendixA we
show that any priority queue data structure can be modified toguarantee canonical shortest
paths. Chapter4 develops aqueryalgorithm that uses highway hierarchies. After several
correctness preserving transformations, we get a bidirectional, DIJKSTRA-like search in a
single graph that contains all levels. The only modifications affect the selection of edges to
be relaxed and how to finish the search when the search frontiers froms andt meet.

Chapter5 highlights some interesting aspects of animplementationof our approach. In
Chapter6, we summariseexperimentsusing detailed road networks for Western Europe and
the USA. Using a uniform neighbourhood sizeH of 125 and 225, respectively, the graphs
shrink geometrically from level to level. This leads to a preprocessing time of around four
hours and average query times below 8 ms. Possiblefuture improvementsare discussed in
Chapter7.

7

Chapter 2

Preliminaries

2.1 Shortest Paths and DIJKSTRA ’s Algorithm

Graphs and Paths. We expect anundirectedgraphG = (V, E) with n nodes andm
edgese with nonnegativeweightsw(e) as input.1 We assume w.l.o.g. that there are no
self-loops, parallel edges, and zero weight edges in the input – they could be dealt with
easily in a preprocessing step. Thelengthw(P) of a pathP is the sum of the weights of
the edges that belong toP . P ∗ = 〈s, . . . , t〉 is a shortest pathif there is no pathP ′ from
s to t such thatw(P ′) < w(P ∗). Thedistanced(s, t) betweens and t is the length of a
shortest path froms to t. If P = 〈s, . . . , s′, u1, u2, . . . , uk, t

′, . . . , t〉 is a path froms to t,
thenP |s′→t′ = 〈s′, u1, u2, . . . , uk, t

′〉 denotes thesubpathof P from s′ to t′. An example for
these concepts is given in Fig.2.1.

s

0 0

t

0
t′u2u1

s′

0

3

6

6

3 2 4 5 1
4

3

a node

an edge with weight 6

P |s′→t′

P

P ∗

Figure 2.1:An undirected graph withn = 10 nodes andm = 10 edges. Two pathsP
andP ∗ from nodes to nodet are marked. The lengthw(P) of P is 22;w(P ∗) = 15. P ∗

is a shortest path. The distance froms to t is d(s, t) = w(P ∗) = 15. A subpathP |s′→t′ of
P from s′ to t′ is highlighted.

DIJKSTRA ’s Algorithm. DIJKSTRA’s algorithm [9] can be used to solve thesingle source
shortest path (SSSP) problem, i.e., to compute the shortest paths from a single source nodes
to all other nodes in a given graph. It is covered by virtuallyany textbook on algorithms, e.g.

1Unless otherwise stated, we always deal withundirectededges. The restriction to undirected graphs
simplifies the presentation of our approach and the implementation. However, our method can be generalised
to directedgraphs. In further footnotes we will outline what has to be done.

8

[7, 29]. For the sake of self-containment, we give an outline introducing the terminology
used throughout this thesis.

Starting with the source nodes as root, DIJKSTRA’s algorithm grows ashortest path tree
that contains shortest paths froms to all other nodes. During this process, each node of the
graph is eitherunreached, reached, or settled.

• A node that already belongs to the tree issettled. If a nodeu is settled, a shortest path
P ∗ from s to u has been found and the distanced(s, u) = w(P ∗) is known.

• A node that is adjacent to a settled node isreached. Note that a settled node is also
reached. If a nodeu is reached, a pathP from s to u, which might not be the shortest
one, has been found and atentative distancew(P) is known.

• Nodes that are not reached areunreached.

The nodes that are reached but not settled are managed in apriority queue, which supports
the operations

• insert– insert an element into the priority queue,

• deleteMin– retrieve the element with the smallest key and remove it from the priority
queue,

• decreaseKey– set the key of an element that already belongs to the priority queue to
a new value that is less than the old value.

Thekeyof a node in the priority queue is its tentative distance.
Initially, s is inserted into the priority queue with the tentative distance 0. Thus,s is

reached, all other nodes are unreached. While the priority queue is not empty, the nodeu
with the smallest tentative distance is removed (deleteMin) and added to the shortest path
tree, i.e.,u becomes settled. Furthermore,u’s outgoing edges arerelaxed:

• if an edge(u, v) leads to an unreached nodev, v is added to the priority queue (insert);
now,v is reached;

• if an edge(u, v) leads to a reached but not settled nodev, v’s key in the priority queue
is updated (decreaseKey) provided that the length of the path froms via u to v is less
thanv’s old key;

• if an edge(u, v) leads to a settled nodev, it is ignored.

Canonical Shortest Paths. A selection of shortest pathsSP contains for each connected
pair(s, t) ∈ V ×V exactly one shortest path froms to t. Such a selection is calledcanonical
if P = 〈s, . . . , s′, . . . , t′, . . . , t〉 ∈ SP implies thatP |s′→t′ ∈ SP . The elements of a
canonical selection are calledcanonical shortest paths. If D IJKSTRA’s algorithm is started
from each nodes ∈ V , for each connected pair(s, t) exactly one shortest path is determined.
In AppendixA some modifications of DIJKSTRA’s algorithm are described which ensure
that the obtained selection of shortest paths is canonical.Figure3.4 in Section3.1explains
the importance of this concept.

9

2.2 Highway Hierarchy

Locality. Let us fix any rule that decides which element DIJKSTRA’s algorithm removes
from the priority queue in the case that there is more than onequeued element with the
smallest key. Then, during a DIJKSTRA search from a given nodes, all nodes are settled in
a fixed order. TheDijkstra rank rs(v) of a nodev is the rank ofv w.r.t. this order.s has
DIJKSTRA rankrs(s) = 0, the closest neighbourv1 of s has DIJKSTRA rankrs(v1) = 1, and
so on. For a given nodes, the distance of theH-closest node froms is denoted bydH(s), i.e.,
dH(s) = d(s, v), wherers(v) = H. TheH-neighbourhoodNH(s) (or justneighbourhood
N(s)) of s isN(s) := {v ∈ V | d(s, v) ≤ dH(s)}. 2 Figure2.2gives an example.

6

5
20

1

3

4

8

9

7

s

N5(s)

rs =

Figure 2.2:A graph with a given source nodes. TheDIJKSTRA rankof all nodes and the
5-neighbourhoodof s are depicted. The weight of an edge is the length of the line segment
that represents the edge in this figure.

Highway Hierarchy. For a given parameterH, the highway networkG1 = (V1, E1)
of a graphG is defined by the setE1 of edges: an edge(u, v) ∈ E belongs toE1 iff
there are nodess, t ∈ V such that the edge(u, v) appears in the canonical shortest path
〈s, . . . , u, v, . . . , t〉 from s to t with the property thatv 6∈ NH(s) andu 6∈ NH(t). The setV1

is the maximal subset ofV such thatG1 contains no isolated nodes. Figure2.3 illustrates
this definition, Fig.2.4and2.5show examples of highway networks.

NH(s) NH(t)

s t

Highway

Figure 2.3:A canonical shortest path from a nodes to a nodet. Edges that leave the
neighbourhood ofs or t and edges that are completely outside the neighbourhoods ofs

andt arehighway edges.

2For directed graphs we also need an analogous valued̄H(·) that refers to the reverse graph̄G :=
(V, {(v, u) | (u, v) ∈ E}). N̄(·) is defined correspondingly. From now on, whenever the targetnodet or
the backward search fromt is concerned, we have to keep in mind thatḠ, d̄H(·), andN̄(·) apply.

10

5

18

1716

19

22

2120

23

2524

14

1312

15

10

98

11

6

4

7

26

23

10

Figure 2.4:A simple example of a highway network. Thehighway edgesare highlighted.
The weight of an edge is the length of the line segment that represents the edge in this
figure. The neighbourhood sizeH is 3.

Figure 2.5:The highway network of Europe, clipped by a bounding box around Karl-
sruhe. Thehighway edgesare highlighted.

11

The2-coreof a graph is the maximal vertex induced subgraph with minimum degree two.
A graph consists of its 2-core andattached trees, i.e., trees whose roots belong to the 2-core,
but all other nodes do not belong to it (Fig.2.6). A line in a graph is a path〈u0, u1, . . . , uk〉

r

18

17

19

22

2120

14

1312

15

10

98

11

23

0 1

26

4 5

67

u

v

w

Figure 2.6:The2-coreof the highway network from Fig.2.4and anattached treewhose
root r belongs to the 2-core. Note thatu does not belong to the 2-core although it has
degree 3 in the highway network.

consisting of more than two nodes where the inner nodesu1, . . . , uk−1 have degree two
(Fig. 2.7). From the highway networkG1 of a graphG, thecontracted highway networkG′

1

of the graphG is obtained by taking the 2-core ofG1 and then removing the inner nodes
of all lines 〈u0, u1, . . . , uk〉 and replacing each line by an edge(u0, uk) (Fig. 2.8). Thus,
the highway networkG1 consists of the contracted highway network (also calledcore) G′

1

and somecomponents, where ‘component’ is used as a generic term for ‘attached tree’ and
‘line’. In this thesis, ‘components’ is always used in this specific sense, but never to denote
‘connected components’ in general. Sometimes it is convenient to use the term ‘endpoint(s)
of a component’ to denote either the endpoints of a line or theroot of a tree.

The highway hierarchyis obtained by applying the process that leads fromG to G′
1

iteratively. The original graphG0 := G′
0 := G constitutes level 0 of the highway hierarchy,

G1 corresponds to level 1, the highway networkG2 of the graphG′
1 is called level 2, and so

on.

12

Figure 2.7:The2-coreof the highway network from Fig.2.4containing five lines.End-
pointsandinner nodesof lines are marked. Both endpoints of a line are connected bya
shortcut.

Figure 2.8:Thecontracted highway networkobtained from the highway network from Fig.2.4.

13

Chapter 3

Construction

3.1 Fast Construction of the Highway Network

We start with an empty set of highway edgesE1. For each nodes0, two phases are per-
formed: the forward construction of a partial shortest pathtreeB and the backward evalua-
tion of B. The construction is done by an SSSP search froms0; during the evaluation phase,
paths from the leaves ofB to the roots0 are traversed and for each edge on these paths, it
is decided whether to add it toE1 or not. The crucial part is the specification of an abort
criterion for the SSSP search in order to restrict it to a ‘local search’.

Phase 1: Construction of a Partial Shortest Path Tree. A D IJKSTRA search froms0

is executed. During the search, a reached node is either in the stateactiveor passive. The
source nodes0 is active; each node that is reached for the first time (insert) and each reached
node that is updated (decreaseKey) adopts the activation state from its (tentative) parent in
the shortest path treeB. When a nodep is settled and theabort criterion (see below) is
fulfilled, p’s state is set to passive. When no active unsettled node is left, the search is
abortedand the growth ofB stops.

Abort Criterion. When a nodep is settled using the pathP ′ as depicted in Fig.3.1, then
p’s state is set to passive if|N(s1) ∩ N(p)| ≤ 1.

N(p)

N(s1)

s0 s1 p

Figure 3.1:Abort criterion.

An example for Phase 1 of the construction is given in Fig.3.2. Note that the simpler
abort criterionN(s0) ∩ N(p) = ∅ does not work – Fig.3.3 gives a counter-example. The
intuitive reason fors1 (which is the first successor ofs0 on the pathP ′) to appear in the
abort criterion is the following: When we deactivate a nodep during the search froms0,

14

s1

s0s1

p

s1

p

p

18

1716

22

19

23

20 21

14

13

15

2524

10

9

11

67

4

0

N(s1)
N(s1)

N(s1)

N(p)

N(p)

N(p)

Figure 3.2:An example of Phase 1 of the construction. The weight of an edge is the
length of the line segment that represents the edge in this figure. The neighbourhood size
H is 3. An SSSP search is performed froms0. The abort criterion applies three times:
the involved nodess1 andp and the corresponding neighbourhoods are marked incyan,
magenta, andbrown, respectively. In thebrown case, the intersection of the concerned
neighbourhoods contains exactly one element; in the other two cases, the intersections are
empty. All edges that belong tos0’s partial shortest path tree are coloured: edges that leave
active nodes areblue, edges that leave passive nodes aregreen.

N(t)N(s0)

Hwy Hwy

N(p) = N(v)

tp vs0

Figure 3.3:Counter-example for the wrong abort criterionN(s0) ∩ N(p) = ∅. If the
wrong abort criterion was applied, the search froms0 and fromt would be aborted atp
andv, respectively. Hence, the edge(p, v) would not be added to the highway network.
However, for the shortest path search froms0 to t, this edge would have to belong to the
highway network.

15

we decide to ignore everything that lies behindp. We are free to do this because the abort
criterion ensures thats1 can take ‘responsibility’ for the things that lie behindp, i.e., further
important edges will be added during the search froms1. (Of course,s1 will refer a part of
its ‘responsibility’ to its successor.) In this context, Fig. 3.4 illustrates why the concept of
canonical shortest pathshas been introduced in Section2.1.

s0

0

0

0 0

0

0
u′

u v

t0s1 t1

v′

N(s1) N(t1)

N(v′)
N(s0)

1 2

2 2

2
221

1

1

1

1
1

1

(a) Construction, started froms0.

0

0

0 0

0

0

u

v′

v

t1 t0s0 s1

u′

N(s1)
N(t0)N(u′)

N(v)

1 2

2 2

2
221

1

1

1

1
1

1

(b) Construction, started froms1.

0

0

0 0

0

0

u

v′

t1s0 t0

v

s1

u′

1 2

2 2

2
221

1

1

1

1
1

1

(c) Result of the construction.

Figure 3.4:An example of the construction withoutcanonical shortest paths. The neigh-
bourhood sizeH is 3. In (a) and (b), the edges are coloured that belong to the partial
shortest path tree rooted ats0 ands1, respectively; edges that are added to the highway
network are red. We assume that the search froms0 (a) and fromt1 ‘prefers’ the upper
branch (u andv), while the search froms1 (b) and fromt0 ‘prefers’ the lower branch (u′

andv′). The result is a ‘broken’ highway network (c). In contrast,the concept of canonical
shortest paths guarantees thats0 ands1 ‘prefer’ the same branch so that ‘s1 can finish what
s0 started’.

Phase 2: Selection of the Highway Edges.During Phase 2, exactly all edges(u, v) are
added toE1 that lie on paths〈s0, . . . , u, v, . . . , t0〉 in the partial shortest path treeB with the
property thatv 6∈ N(s0) andu 6∈ N(t0), wheret0 is a leaf ofB. The example from Fig.3.2
is continued in Fig.3.5.

Lemma 1 Consider a shortest path〈u, . . . , t, . . . , t′〉, wheret′ ∈ N(u). Then,t ∈ N(u).

Proof: Follows directly from the definition of the neighbourhood sinced(u, t) < d(u, t′). �

16

.

s0.

t0

.

t0

p

18

1716

22

19

23

20 21

14

13

15

2524

9

11

67

t0

t0

t0

N(s0)
N(t0)

N(t0)

N(t0)

N(t0)

N(t0)

Figure 3.5:An example of Phase 2 of the construction.s0’s partial shortest path tree has
five leavest0, which are marked in different colours. Theedgesthat are added toE1 are
highlighted.

Lemma 2 Consider a shortest path〈u, . . . , t, . . . , t′〉, whereu ∈ N(t′). Then,u ∈ N(t).

Proof: Since∀v ∈ N(t) : d(v, t′) ≤ d(v, t) + d(t, t′) ≤ dH(t) + d(t, t′), we have, in
particular,

max
v∈N(t)

d(v, t′) ≤ dH(t) + d(t, t′). (3.1)

Furthermore,|N(t)| ≥ H + 1 implies thatmaxv∈N(t) rt′(v) ≥ H (because the DIJKSTRA

ranks are unique and the smallest DIJKSTRA rank is 0). Thus,

max
v∈N(t)

d(v, t′) ≥ dH(t′). (3.2)

(3.1) and (3.2) lead to
dH(t′) ≤ dH(t) + d(t, t′). (3.3)

The condition thatu ∈ N(t′) implies

d(u, t′) ≤ dH(t′). (3.4)

(3.3) and (3.4) lead to

d(u, t′) ≤ dH(t) + d(t, t′) ⇐⇒ d(u, t′) − d(t, t′) ≤ dH(t) ⇐⇒ d(u, t) ≤ dH(t). (3.5)

Thus,u ∈ N(t). �

Lemma 3 Consider a shortest pathP wheret is not a predecessor1 of s and v is not a
predecessor ofu. Furthermore,u ∈ N(t) andv ∈ N(s) — a “cross-over situation”. Then,
u ∈ N(s) andv ∈ N(t).

1Note that ‘a predecessor’ doesnot necessarily mean ‘the first/direct predecessor’.

17

Proof: We prove the statementu ∈ N(s); the proof ofv ∈ N(t) is symmetric. We distin-
guish between three cases.

1. u = s. Trivial.

2. u is a predecessor ofs, i.e.,P = 〈. . . , u, . . . , s, . . . , t, . . .〉. u ∈ N(s) follows from
Lemma2 sinceu ∈ N(t).

3. u is a successor ofs, i.e., P = 〈. . . , s, . . . , u, . . . , v, . . .〉. u ∈ N(s) follows from
Lemma1 sincev ∈ N(s). �

Theorem 1 An edge(u, v) ∈ E is added toE1 by the construction algorithm iff it belongs
to some canonical shortest pathP = 〈s, . . . , u, v, . . . , t〉 andv 6∈ N(s) andu 6∈ N(t).

Proof: ⇐) Consider the nodes0 on P |s→v = 〈s, . . . , s0, s1, . . . , u, v〉 such thatv 6∈ N(s0)
and d(s0, v) is minimal. Note thatv ∈ N(s1) [*]. Such a nodes0 exists because the
conditionv 6∈ N(s0) is always fulfilled fors0 = s. We show that the edge(u, v) is added
to E1 when Phase 1 and 2 are executed froms0. It is important to note thatP |s0→t is a
canonical shortest path and, thus, if a nodev′ on P |s0→t is settled during Phase 1, then its
parent inB is its predecessor onP |s0→t. In other words, the shortest path froms0 to v′ that
is traversed during Phase 1 is not an arbitrary shortest path, but the canonical shortest path
P |s0→v′ . After Phase 1 has been completed, we distinguish between two cases.

Caset ∈ B. We know thatu 6∈ N(t). Let t0 be any leaf ofB that is either a descendant
of t or t itself. By Lemma2, we obtainu 6∈ N(t0).

Caset 6∈ B. The search is not continued from some nodet0 6= t onP |s0→t. In general,
the search of Phase 1 is not continued from a nodet′0 if and only if there is no canonical
shortest path froms0 via t′0 to another node, or the abort condition is fulfilled, i.e., there is
no active unsettled node left. In this case, the first condition cannot apply since for each
nodet′0 6= t on P |s0→t, there is a canonical shortest path froms0 via t′0 to another node,
namely tot. Hence, the second condition must be fulfilled. We can conclude thatt0 is
passive because, otherwise, its successor onP |s0→t would adopt its active state and the
search would not be aborted at that time. Sinces0 is active andt0 is passive, eithert0 or one
of its ancestors must have been switched from active to passive. Letp denote the first passive
node onP |s0→t = 〈s0, s1, . . . , p, . . . , t0, . . . , t〉. Due to the definition of the abort condition,
we have|N(s1) ∩ N(p)| ≤ 1 [**]. In order to obtain a contradiction, we assumeu ∈ N(p).
Furthermore, we havev ∈ N(s1) [see *]. Lemma3 yieldsu ∈ N(s1) andv ∈ N(p). Hence,
{u, v} ⊆ N(s1) ∩ N(p). Therefore,|N(s1) ∩ N(p)| ≥ 2, which is a contradiction to [**].
We can conclude thatu 6∈ N(p). Furthermore, we know thatv (and, consequently,u) is not
a successor ofp: If v was a successor ofp, Lemma1 would yieldv 6∈ N(p) sinceu 6∈ N(p);
this would be a contradiction to Lemma2 sincev ∈ N(s1) [see *]. From the facts that
u 6∈ N(p), u is not a successor ofp andp is not a successor oft0, we can conclude that
u 6∈ N(t0) due to Lemma2.

So, in both cases, we haveu 6∈ N(t0) and t0 is a leaf ofB. Furthermore,u is not a
predecessor ofs0 (due to the choice ofs0) andv is not a successor oft0. From these facts
and the specification of Phase 2, we can infer that the edge(u, v) is added toE1.

⇒) Each path inB from s0 to a leaft0 is a canonical shortest path due to the modi-
fications of DIJKSTRA’s algorithm as described in AppendixA. Hence, the claim follows
directly from the specification of Phase 2. �

18

Details on Phase 2. For a nodeu ∈ B, defineLu as the set of leavest0 of B that are
the endpoints of paths of the form〈s0, . . . , u, . . . , t0〉. Theslack∆(u) of a nodeu ∈ B is
defined in the following way:∆(u) := mint0∈Lu

(dH(t0) − d(u, t0)). For a leaft0, we have
Lt0 = {t0} and∆(t0) = dH(t0). The slack of an inner nodeu can be computed using only
the slacks of its childrenCu: ∆(u) = minc∈Cu

∆c(u), where∆c(u) := ∆(c)− d(u, c). This
leads to an equivalent, recursive definition.

The slacks∆(t0) of all leavest0 of B are set todH(t0). The tentative slackŝ∆(u) of
all other nodesu of B are set to+∞. A FIFO queueQ is filled with all leaves ofB (in
an arbitrary order). All elements ofQ are processed one after the other untilQ is empty.
We maintain the invariant that the tentative slack∆̂(u) of an elementu that is removed
from Q is equal to the actual slack∆(u). When a nodeu is removed fromQ, we compute
∆u(p) = ∆(u) − d(p, u), wherep is the parent ofu in B. If ∆u(p) < 0, the edge(p, u) is
added toE1. If ∆̂(p) = +∞ and the nodep does not belong toN(s0), thenp is added toQ.
If ∆u(p) < ∆̂(p), the tentative slack̂∆(p) is set to∆u(p). Figure3.6gives an example.

.

-11.

4

-4

.

p

18

1716

22

19

23

20 21

14

13

15

2524

2

-2

67

.

.

4

7

2

2

6

2

t0

t0

s0

Figure 3.6:An example of theslack-based methodthat realises Phase 2 of the construc-
tion. The process is shown only for a part of the tree. As before, the weight of an edge is
the length of the line that represents the edge in this figure.For the sake of transparency,
the (rounded) weights are given explicitly for the relevantedges. Furthermore, the slacks
of the involved nodes are given. Edges that areadded toE1 are red, edges that arenot
addedblue.

Theorem 2 An edge(u, v) is added toE1 by theslack-based methodintroduced above iff it
lies on a path〈s0, . . . , u, v, . . . , t0〉 in the partial shortest path treeB with the property that
v 6∈ N(s0) andu 6∈ N(t0), wheret0 is a leaf ofB.

Proof: ⇐) From the definition of the slack of a node, it follows that

∆v(u) = ∆(v) − d(u, v) ≤ dH(t0) − d(v, t0) − d(u, v) = dH(t0) − d(u, t0) < 0

becauseu 6∈ N(t0). Sincev 6∈ N(s0), the nodev is inserted inQ at some point. When it is
removed fromQ, ∆v(u) is computed and, since it is negative, the edge(u, v) is added toE1.

19

⇒) Only edges that belong to a path inB from s0 to a leaft0 are considered. The
conditionv 6∈ N(s0) is never violated because the traversal from the leaves to the root,
and consequently, the addition of edges toE1, is not continued when a nodep belongs to
N(s0). If an edge(u, v) is added, the condition∆v(u) < 0 is fulfilled. Hence,∆(u) =
mint0∈Lu

(dH(t0) − d(u, t0)) ≤ ∆v(u) < 0. Therefore, there is a leaft0 such thatd(u, t0) >
dH(t0), i.e.,u 6∈ N(t0). �

Theorem 3 Let VB denote the set of nodes ofs0’s partial shortest path treeB. Let GB =
(VB, EB) denote the subgraph ofG that is vertex induced byVB. The complexity of Phase 1
and 2 started froms0 is TDijkstra(|GB|).

Proof: The number of nodes ofGB is denoted byn′, the number of edges bym′. The
complexity of Phase 1 corresponds to the complexity of a SSSPsearch inGB started from
s0, i.e.,O(n′+m′) outside the priority queue plusn′ insertandn′ deleteMinoperations plus
at mostm′ decreaseKeyoperations. The initialisation of the (tentative) slacks for Phase 2 can
be done during Phase 1 without any additional effort. DuringPhase 2, at mostn′ nodes are
processed. For each node, only a constant number of operations is performed, particularly,
only one edge (to the parent node inB) is considered. �

3.2 Speeding up Construction

In the optimal case, the sizes of the partial shortest path treesB are bounded by a small
multiple of the neighbourhood sizeH. However, in less balanced cases, the trees can get
quite big. Figure3.7gives an example of such a scenario. It shows the road networkof Italy
including ferry connections. When the search starts from a nodes0 close to a harbour so that
a very long ferry edge is relaxed, the search cannot be aborted until the arrival pointp of the
ferry has been settled and deactivated. This means that all roads that lead to nodes whose
distance froms0 is less thand(s0, p) have to be traversed. In our example, it might be the
case that instead of a local area almost the entire country isinvolved when, for instance, the
edge Genoa–Palermo is relaxed.

In order to deal with this problem, we introduce the concept of mavericks: An active
nodev is declared to be amaverickif d(s0, v) > f · dH(s0), wheref is a parameter. When
all active nodes are mavericks, the search from passive nodes is no longer continued.

In our example, we now have the following situation: When thesearch is started from
Genoa, then Palermo and the arrival points of the other ferries are mavericks because they
are very far away from Genoa. Hence, a local area around Genoais searched until all nodes
that have been reached by road have been deactivated. Then, the search on the roads is not
continued, but the arrival points of the ferries are settledimmediately. Thus, the search has
been restricted to a local area plus a few remote nodes where the ferries arrive.

However, this improvement has a disadvantage. Aborting thesearch at the passive nodes
abolishes the guarantee that only shortest paths are found.For instance, it might be faster to
drive from Genoa to Palermo by car (crossing the Strait of Messina from the southern tip of
the Italian mainland to Sicily by ferry) instead of using thedirect ferry link. If we abort the
search on the mainland, the direct ferry connection might bewrongly added to the highway
network, which should contain only edges that belong to someshortest path.

20

Figure 3.7:The road network of Italy including ferry connections.

Theorem 4 The accelerated construction method yields a superset of the highway network.

Proof: The⇐)-part of the proof of Theorem1 still holds. �

Hence, queries will be slower, but still compute exact shortest paths. Figure3.8 compares
the precise construction method from Section3.1 with the accelerated method from this
section.

The parameterf enables us to adjust the trade-off between construction andquery time.
f = ∞ yields the precise method from Section3.1, which is comparatively slow, but permits
the best query times because the exact highway network is computed.f = 0 leads to a very
fast construction method, which adds a lot of needless edgesto the highway network, which
slow down the queries. In Section6.2 we will look for a good compromise between these
two extreme choices off .

3.3 Contraction of the Highway Network

Theorem 5 The highway network can be contracted in timeO(m + n).

Proof: In order to determine the 2-core ofG1, we can use a simplified version of the more
general algorithm presented in [2]. We remove nodes of degree one (and the incident edge)
until all remaining nodes have degree at least two. (Note that the removal of such a node
reduces the degree of another node so that a new degree-one node can emerge.) During this
process, we manage a list that contains the roots of the attached trees. After the 2-core has

21

active

passive
s0

v

(a) The precise construction method (Sec-
tion 3.1). As long as there is at least one ac-
tive node, the search from passive nodes is
continued. The shortest path froms0 to v is
found.

s0

mavericks

f · dH(s0)

pas-
sive

active

v

(b) The accelerated construction method
(Section3.2). Active nodes whose distance
from s0 is above a certain threshold are de-
clared to be mavericks. When this threshold
is reached, the search from passive nodes is
no longer continued. The shortest path from
s0 to v is not found.

Figure 3.8:Comparison between different construction methods.

been determined, each rootr initiates a traversal of the corresponding tree: each nodeu
of the tree (except the root) creates a directshortcutto the root, i.e., a directed edge(u, r)
whose weight is equal to the length of the already existing path fromu to r. For an example,
refer to Fig.3.9.

For each node that has degree two in the 2-core, but has not been assigned to a line yet,
the line is traversed in an arbitrary direction until an endpoint, a node of degree greater than
two, is encountered. Then, the line is traversed in the reverse direction: each node creates a
shortcut to the already known endpoint. Finally, after the second endpoint has been reached,
the line is traversed another time: each node creates a shortcut to the second endpoint. Note
that there is also an undirected shortcut between both endpoints. Some special cases, namely
cycles with and without an exit (a node of degree greater thantwo), have to be dealt with
appropriately.2 Figure3.10gives an example. �

Highway Hierarchy. The result of the contraction is the contracted highway network G′
1,

which can be used as input for the next iteration of the construction procedure in order to
obtain the next level of the highway hierarchy.

2For directed graphs, we basically pretend that the graph wasundirected and determine the components
as usual. However, a shortcut fromu to v is added only if there is a corresponding path fromu to v in the
directed graph. In addition, we add shortcuts from the endpoints to the nodes inside the component iff there is
a corresponding path in the directed graph.

22

r

18

17

19

22

2120

14

1312

15

10

98

11

23

0 1

26

4 5

67

u

v

w

Figure 3.9:The2-coreof the highway network from Fig.2.4and anattached treewith shortcuts.

Figure 3.10:The2-coreof the highway network from Fig.2.4containing five lines. Both
endpointsof a line are connected by an undirectedshortcut. There is a directedshortcut
from eachinner nodeof a line to bothendpoints.

23

Chapter 4

Query

In Section4.1, we define thehighway hierarchyas a multilevel graph and present an al-
gorithm that finds for given nodess andt a path in the multilevel graph that corresponds
to a shortests-t-path in the original graph. The algorithm is a modification of the bidi-
rectional version of DIJKSTRA’s algorithm, butwithout abortingwhen both search scopes
meet. In Section4.2, we explain how the multilevel graph can be represented in anone-level
graph enhanced by some additional data. Furthermore, we indicate how the multilevel query
algorithm can be adapted to the new situation. Note that the multilevel representation of Sec-
tion 4.1simplifies the proof of correctness, while the one-level representation of Section4.2
is more suitable as a foundation of an implementation. In Section 4.3, we show that the
naive abort-on-success criterion (“abort when both searchscopes meet”) would invalidate
the correctness of our query algorithm. Therefore, we present a more sophisticated criterion
that preserves the correctness.

4.1 Multilevel Query Algorithm

The highway hierarchyG = (V, E) consists of the graphsG0, G1, G2, . . . , GL, which are
arranged inL + 1 levels. For each nodev ∈ V and eachi ∈ {j | v ∈ Vj}, there is one
copy ofv, namelyvi, that belongs to leveli of G. Accordingly, there are several copies of
an edge(u, v) whenu andv belong to more than one common level. These edges, which
connect two nodes in the same level, are calledhorizontaledges. Additionally,G contains
a directed edge(vℓ, vℓ+1) for each pairvℓ ∈ Vℓ, vℓ+1 ∈ Vℓ+1, wherevℓ andvℓ+1 are copies
of the same nodev ∈ V . These additional edges are calledvertical and have weight 0. For
each nodev, not only one valuedH(v) is known, but for each levelℓ < L, there is a distance
dℓ

H(v) from v to theH-closest node in the coreG′
ℓ of level ℓ; if a nodev does not belong to

G′
ℓ, dℓ

H(v) is defined to be+∞; furthermore,dL
H(v) := +∞. Correspondingly, we use the

notationN ℓ(v) to refer to the set{v′ ∈ V ′
ℓ | d(v, v′) ≤ dℓ

H(v)}, which is theneighbourhood
of v in the graphG′

ℓ. Note that the neighbourhood of a node that belongs to a component
is unbounded, i.e., it contains all nodes of the core of the corresponding level. The same
applies toN L(v), for anyv. Figure4.1gives an example of a highway hierarchy.

The multilevel query algorithmthat works onG is a modification of the bidirectional
version of DIJKSTRA’s algorithm. The source and target nodes of ans-t query are the
corresponding copies ofs andt in level 0. For the time being, we omit the abort-on-success
criterion, i.e., we do not abort when both search scopes meet, but continue until both searches

24

terminate; then, we consider all nodes that have been settled from both sides as meeting
points and take the shortest path that has been found by this means. We donot have to
apply the modifications presented in AppendixA, which ensure that only canonical shortest
paths are found; this is required only during the construction process. We introduce two
restrictions:

1. No horizontal edge in levelℓ is relaxed that would leave the neighbourhoodN ℓ(v∗)
of the corresponding entrance pointv∗. Each node that belongs to the core and has
been settled via a horizontal edge that leaves a component and each node that has been
settled via a vertical edge is anentrance point. In addition, the source and the target
nodes of the query are entrance points. Thecorresponding entrance pointof a settled
nodev is the last entrance point on the path tov.

2. Components are never entered using a horizontal edge.An edge(u, v) entersa com-
ponent if eitheru belongs to the core andv to a component oru belongs to a line
andv to an attached tree. However, an edge from an attached tree toa line leavesthe
attached tree and does not rank among the edges that enter a component. Note that the
endpoint(s) of a component do not belong to the component butto the core (or to the
line in case of the root of a tree that is attached to a line).

Figure4.2is a schematic diagram of a multilevel query, Fig.4.3gives a two-level example.

Theorem 6 For any givens, t ∈ V , the multilevel query algorithm finds the shortest path
froms to t in G.

Proof Idea: It is known that the bidirectional version of DIJKSTRA’s algorithm works cor-
rectly. We have to show that the imposed restrictions do not affect the correctness. When
Restriction 1 applies, it is always possible to switch to thenext level using a vertical edge.
Due to the definition of the highway network, it is guaranteedthat the corresponding part of
the shortest path which we are looking for can be found in the next level. A path froms that
entersa component is not traversed due to Restriction 2. However, from the point of view
of t, this pathleavesthe component so that the edge that has been skipped during the search
from s can be relaxed in the reverse direction during the search from t. Hence, the path can
be found in spite of Restriction 2. These arguments can be used in an inductive proof over
the number of levels.

Proof: In a graphG = (V, E), for two given subsetsS, T ⊆ V and an initial weightw for
each node inS and each node inT , amulti-source-multi-target(MSMT) search determines
the shortest path of all paths from a nodes ∈ S to a nodet ∈ T , where the initial weights
of s andt are added to the corresponding path lengths. An MSMT search is equivalent to a
normalŝ-t̂-search inĜ := (V ∪ {ŝ, t̂}, E ∪ {(ŝ, s, w(s)) | s ∈ S})∪ {(t̂, t, w(t)) | t ∈ T}).
(Ĝ is generated by adding two pseudo-nodesŝ andt̂ to G; eachs ∈ S can be reached via an
edge from̂s, which is weighted by the initial weight ofs, and, correspondingly, eacht ∈ T
can be reached from̂t.)

LetGℓ denote the highway hierarchy that consists only of the levelsℓ, ℓ+1, . . . , L. Note
thatG0 = G. Furthermore, letG ′

ℓ denote the highway hierarchy that consists of the core
of level ℓ and the complete levelsℓ + 1, ℓ + 2, . . . , L, i.e., G ′

ℓ is equal toGℓ without the
components in levelℓ. We prove the following more general statement by induction:

25

u1

u0

v0

w1

v1

Figure 4.1:A highway hierarchyG = (V, E) of the graph given in Fig.2.4consisting of
two levels:G0 = (V0, E0) (‘level 0’) andG1 = (V1, E1) (‘level 1’). As in the previous
examples, the neighbourhood sizeH is 3. Nodes and horizontal edges in level 0are plotted
in grey. There are directedvertical edgesfrom level 0 to level 1.Horizontal edges in level 1
are red. The nodes in level 1 are coloured by type:tree nodes, line nodes, andnodes that
belong to the coreG′

1 = (V ′
1 , E′

1). u0 ∈ V0 andu1 ∈ V1 are copies of the nodeu ∈ V .
(u0, v0) ∈ E0 and(u1, v1) ∈ E1 are copies of the edge(u, v) ∈ E. The third closest node
to u1 in G′

1 is w1. Hence,d1
H(u) would be equal tod(u,w) if there was another level in

the hierarchy. However, since there are only two levels (i.e. L = 1), d1
H(u) is defined to

be+∞.

level 0

level 1

N(v)

N(s)

entrance point to level 1

entrance point to level 0

entrance point to level 2
s

v

Figure 4.2:A schematic diagram of a multilevel query. Only the search started from the
source nodes is depicted.

26

N(s)

N(t)
t

s

18

1716

19

2524

10

98

11

6

54

7

26

0

3

1 12

15

13

14

20

23 22

(a) Local search.

t

s

16

2524

98

11

54

7

26

3

1 12

15

20

23

(b) Restrict to the highway network.

t

s

16

2524

98

11

54

7

26

3

1 12

15

20

23

(c) Search in the highway network.

Figure 4.3:An example of a two-level query. Thesearch spacefrom thesource nodes
and from thetarget nodet is represented; thick edges are part of the shortest path. After
the local search is completed, i.e., the borders ofN(s) andN(t) have been reached (a), we
switch to the next level (b). The further search takes place in the highway network (c).

27

For any ℓ ∈ {0, 1, . . . , L}, any subsetsS, T ⊆ Vℓ, and arbitrary initial weights of the
elements ofS andT , the multilevel query algorithm working on̂Gℓ finds the shortest path
from ŝ to t̂.

Base Case. First, we show that the multilevel query algorithm works correctly inG ′
L. The

additional edges in̂G′
L that leavês or t̂ are interpreted as vertical edges. Hence, all elements

in S andT are entrance points. Since all entrance points belong to level L, their neighbour-
hood is unbounded so that Restriction 1 never applies. Restriction 2 does not apply either
becausêG′

L does not contain any component. Therefore, in this case, themultilevel query al-
gorithm corresponds to the bidirectional version of DIJKSTRA’s algorithm, which is known
to be correct.

Induction Step 1. We assume that the algorithm works correctly onG ′
ℓ. We show that

it also works correctly onGℓ for any given setsS, T ⊆ Vℓ and any initial weights.We
distinguish between two cases.

Case 1:there is a shortest pathP = 〈ŝ, s, . . . , t, t̂〉 which does not include a node that
belongs toG′

ℓ = (V ′
ℓ , E

′
ℓ). In this case, Restriction 1 never applies since the neighbourhoods

of the entrance pointss andt are unbounded and no other entrance point is encountered on
P . If s andt belong to the same component, Restriction 2 does not apply either so thatP
is found. Otherwise,s andt belong to different components. They cannot belong to two
different lines because two lines are connected only by the core. If either node belongs to
a tree and the other one to a line, the tree has to be attached tothe line. (Otherwise, the
assumption of Case 1 thatP does not intersect the core cannot be true.) Then, Restriction 2
prevents that the tree is entered, but it allows to leave the tree so thatP can be found. If both
nodes belong to two different trees, both trees must be attached to the same line. Both trees
can be left so that both search scopes can meet within the line.

Case 2:all shortest paths from̂s to t̂ pass through the core. Trees can be used only at
the ends of a shortest path because they have only one endpoint. We could have a shortest
path of the form “core – line – core” if both endpoints of the line belong to the path, but in
this case, we can use the equivalent shortcut between both endpoints, which belongs to the
core, so that it is sufficient to deal with shortest paths of the form “tree – line – core – line
– tree”, where the components are optional. In other words, after the components have been
left from both sides, the ‘middle’ part of the shortest path belongs, without interruption, to
the core. LetS ′ be the setS ∩ V ′

ℓ united with the set of all nodes that belong to the core
and can be reached from̂s via an edge that leaves a component. The initial weight of a node
s′ ∈ S ′ is equal to the distanced(ŝ, s′) in Ĝℓ. T ′ and the corresponding initial weights are
defined accordingly. Paths from̂s and t̂ to the elements ofS ′ andT ′, respectively, consist
only of edges that either stay inside the same component or leave a component. Hence, both
restrictions do not apply so that for eachs′ ∈ S ′ and eacht′ ∈ T ′, the shortest paths from̂s
to s′ and fromt̂ to t′ are found. Due to our assumption, the algorithm works correctly on G ′

ℓ

for the setsS ′ andT ′. Hence, the shortest path from̂s′ to t̂′ in Ĝ′
ℓ is found. Obviously, this

shortest path is also a shortest path fromŝ to t̂ in Ĝℓ.

Induction Step 2. We assume that the algorithm works correctly onGℓ. We show that
it also works correctly onG′

ℓ−1 for any given setsS, T ⊆ V ′
ℓ−1 and any initial weights.

28

Restriction 2 does not apply in levelℓ − 1 since this level consists only of the core. Hence,
if both search scopes meet in levelℓ − 1 before Restriction 1 intervenes, the shortest path
is found. Otherwise, all shortest paths pass throughGℓ. Let us consider any shortest path
〈ŝ, s∗, . . . , t∗, t̂〉 from ŝ to t̂. Take the canonical shortest pathP ∗ from s∗ to t∗ in G′

ℓ−1. Then,
P = 〈ŝ, P ∗, t̂〉 is also a shortest path from̂s to t̂. Note thats∗ andt∗ are entrance points
to level ℓ − 1. Let s† and t† be the last nodes onP ∗ = 〈s∗, . . . , s†, s‡, . . . , t‡, t†, . . . , t∗〉
that belong to the neighbourhood ofs∗ andt∗, respectively, i.e.,d(s∗, s‡) > dℓ−1

H (s∗) and
d(t∗, t‡) > dℓ−1

H (t∗). Note thats† and t† are entrance points to levelℓ. According to the
definition of the highway network, the subpathP ∗|s†→t† belongs toGℓ, thus, it belongs to
Gℓ. Let S ′ := Vℓ ∩

⋃
s∈S N ℓ−1(s) and for eachs′ ∈ S ′, w(s′) = d(ŝ, s′). T ′ and the

corresponding initial weights are defined accordingly. Note thats† ∈ S ′ andt† ∈ T ′. For
any nodess′ ∈ S ′ andt′ ∈ T ′, the shortest paths〈ŝ, s, . . . , s′〉 and〈t̂, t, . . . , t′〉 from ŝ to s′

and fromt̂ to t′, respectively, are found because Restriction 1 does not apply on shortest paths
from s to s′ and fromt to t′. Due to the induction hypothesis, the algorithm works correctly
onGℓ for the setsS ′ andT ′. Hence, a shortest pathQ′ = 〈ŝ′, s′, . . . , t′, t̂′〉 from ŝ′ to t̂′ in Ĝℓ

is found. We know that the pathQ = 〈ŝ′, P ∗|s†→t† , t̂
′〉 belongs toĜℓ. The lengthw(Q) of Q

is equal tod(ŝ′, s†)+w(P |s†→t†)+d(t†, t̂′) = w(P |bs→s†)+w(P |s†→t†)+w(P |t†→bt) = w(P).
SinceQ′ is a shortest path in̂Gℓ, we havew(Q′) ≤ w(Q) = w(P). The algorithm returns
the pathP ′, which corresponds toQ′ when the edges(ŝ′, s′) and(t̂′, t′) are replaced with
shortest paths in̂G′

ℓ−1 from ŝ to s′ and fromt̂ to t′. To sum up,P is known to be a shortest
path fromŝ to t̂ in Ĝ′

ℓ−1 and the algorithm returns a pathP ′, whose lengthw(P ′) = w(Q′)
is less than or equal to the length ofP . Hence, the algorithm returns a shortest path fromŝ
to t̂ in Ĝ′

ℓ−1. �

4.2 Collapse of the Vertical Dimension

So far, we allow that several copies of the same node are reached. However, we can show
that it is sufficient if at most one copy of a node is reached viaa horizontal edge. We enhance
our algorithm by adding the following rule:

Let us assume that exactly one copyvi of a nodev in leveli has been reached via
a horizontal edge and another horizontal edge is about to be relaxed to another
copy vj of v. Then, only the copy with the smaller tentative distance should
be inserted (or remain) in the priority queue or – if the tentative distances ofvi

andvj are equal – the copy in the lower level. (Note that ifvi has already been
settled, then the tentative distance ofvj is greater than the tentative distance of
vi since we assume that no horizontal edge has weight 0. In this case, the edge
leading tovj is disregarded andvi stays in its settled state.)

Lemma 4 The above rule does not invalidate the correctness of the algorithm.

Proof: Case 1.The tentative distances differ. Independently of the level, an edge that leads
on a pathQ from s to a copy ofv cannot belong to a shortest pathP from s to t if there
is a shorter pathQ′ to another copy ofv because, then, the replacement of the subpath
Q = P |s→v by Q′ would yield a shorter pathP ′.

29

Case 2.The tentative distances are equal. It cannot be wrong to prefer the lower level
copy in this case because the lower level is a superset of the higher level. Furthermore, a
higher level can be reached from a lower level at any time, while the converse is not true.�

As a consequence of the above rule, it is not necessary to go upwards using a vertical edge
if all horizontal edges could be relaxed without breaching Restriction 1.

Due to these observations, we can let the vertical dimensioncollapse. We can interpret
the highway hierarchyG as one plain graph, i.e., there are no copies of the nodes distributed
over several levels. Basically, this graph corresponds to the original graphG enhanced by
shortcuts and some additional data: each edge(u, v) is assigned a maximum levelℓ(u, v),
i.e., it belongs to the levels0, 1, . . . , ℓ(u, v); each nodev is assigned to at most one compo-
nentc(v); a componentc(v) belongs to a certain levelℓ(c(v)), which is equal to the level its
inner edges belong to. With this interpretation ofG in mind, we can get another view of the
multilevel query algorithm. Let us consider the search fromthe source nodes; the search
from the targett works analogously. Each reached nodeu is assigned a certain search level
ℓs(u). On a shortest pathPs = 〈s = s′0, . . . , s1, . . . , s

′
1, . . . , s2, . . . , s

′
2, . . .〉, the search levels

increase monotonically: the first nodes up to and includings1 belong to search level 0,s1 is
the entrance point to level 1, all successors up to and including s2 belong to level 1,s2 is the
entrance to level 2, and so on. Ifsℓ belongs to a component in levelℓ, then there is another
entrance points′ℓ, namely, the first node on the pathPs that belongs to the core of levelℓ; oth-
erwise, we havesℓ = s′ℓ. The entrance pointsℓ+1 is the last node on the pathP that belongs
toN ℓ(s′ℓ). An edge(u, v) can be relaxed only ifℓ(u, v) ≥ ℓs(u). A shortest pathP from s to
t has the form〈s = s′0, . . . , s1, . . . , s

′
1, . . . , sℓ, . . . , s

′
ℓ, . . . , t

′
ℓ, . . . , tℓ, . . . , t

′
1, . . . , t1, . . . , t

′
0 =

t〉, wheres′ℓ andt′ℓ are omitted if both search scopes meet inside a component in levelℓ.

4.3 Abort-on-Success

In the bidirectional version of DIJKSTRA’s algorithm, we can abort as soon as both search
scopes meet, i.e., there is one nodev that is settled in both search scopes. Then, the shortest
pathP from s to t does not necessarily consist of the shortest paths froms to v and fromv
to t, but it is well known that it is always ensured that the right meeting pointv′ has already
been reached from both sides. The following lemma is a generalisation of this fact.

Lemma 5 If ds + dt is an upper bound for the length of the shortest path, all nodes whose
distance froms is less thands have been settled in the search scope ofs, and all nodes
whose distance fromt is less thandt have been settled in the search scope oft, then there is
a shortest pathP = 〈s = s0, s1, . . . , si, v

′, tj , . . . , t1, t0 = t〉 such that all nodessx and ty
have been settled in the search scope ofs or t, respectively, andv′ has been reached in both
search scopes.

Proof: Let P = 〈s, . . . , s′, v′, t′, . . . , t〉 be a shortest path froms to t. The distance froms
to the first nodev′ that is unsettled in the search scope ofs is greater than or equal tods.
The fact that the predecessors′ of v′ has been settled implies thatv′ has been reached from
s. Fromw(P) ≤ ds + dt, we can conclude thatd(v′, t) = w(P) − d(s, v′) ≤ dt. Hence,
d(t′, t) < dt because we exclude edges of weight 0. Therefore,t′ has been settled in the
search scope oft so thatv′ has been reached fromt as well. �

30

Thus, if one nodev is settled in both search scopes, the precondition of Lemma5 is fulfilled
for ds = d(s, v) anddt = d(t, v). Therefore, the shortest path can be determined by choosing
the nodev′ as meeting point that has been reached in both search scopes and minimises
d(s, v′) + d(t, v′).

Unfortunately, we cannot adopt the abort-on-success criterion as it stands because, in
general, the multilevel query algorithm does not fulfil the precondition of Lemma5 as sev-
eral edges are not relaxed due to Restriction 1 and 2 so that wecannot guarantee that all
nodes up to a certain distance have been settled. In other words, if we aborted the search, it
might happen that we miss the shortest path in the case that the shortest path contains one
of the skipped edges. In contrast, we have already shown thatthe algorithm without abort is
correct: if an edge that belongs to the shortest path is not relaxed (e.g. a component is not
entered), then it is – at some point in time – relaxed from the other side (e.g. the component
is left). Thus, our multilevel query algorithm has the chance to improve the tentative result
after both search scopes have met. Nevertheless, instead ofwaiting until the search is com-
pletely finished, we can use a less conservative approach, which relies on the following very
general and self-evident lemma.

Lemma 6 After both search scopes have met, we can abort as soon as we can excludethat
we would be able to improve the (tentative) result if we continued.

The next lemma provides a version of Lemma6 that is more specific to our situation.

Lemma 7 After both search scopes have met, we can abort as soon as it iscertain that for
all edgese = (u, v) that have been skipped at nodeu, the edgee will not be relaxed fromv
during the oncoming search.

Lemma7 trivially applies as soon as all skipped edges have been relaxed from the other
side: obviously, this implies that they will not be relaxed in the future (since each edge is
relaxed at most once). However, we can do better. A search level ℓ is said to befinished
when there are no reached but unsettled nodes in levelℓ or below. Note that if the search
level ℓ is finished, edgese in levelsℓ(e) ≤ ℓ cannot be relaxed any longer.

Lemma 8 Let Es denote the set of all horizontal edges that have been skippedduring the
search froms. Et is defined accordingly. After both search scopes have met, wecan abort as
soon as the search fromt has finished search levelℓ̂s := maxe∈Es

ℓ(e) and the search froms
has finished level̂ℓt := maxe∈Et

ℓ(e).

Proof: When the search fromt has finished search level̂ℓs, it is certain that no edgee
that belongs to a levelℓ(e) ≤ ℓ̂s will be relaxed during the oncoming search, in particular,
no edge that has been skipped during the search froms will be traversed by the backward
search. The same argument applies to the reverse search direction. �

Improvements of the Abort-on-Success Criterion.

1. If level ℓ − 1 is finished and a component in levelℓ has not been entered yet, it will not
be entered in the future either because the only way to enter acomponent is via a vertical
edge from the level below. If a component is entered, i.e., a nodev that belongs to the
component is settled, all edges that leavev are relaxed including the shortcut(s) to the

31

endpoint(s) of the component. These shortcuts correspond to the shortest paths fromv to
the endpoints and, thus, they contain the reverse edges of the horizontal levelℓ edges that
enter the component. From these facts, we can conclude that when levelℓ−1 is finished,
the reverse edge of a horizontal edge that enters a componentin levelℓ either has already
been relaxed or will not be relaxed at all. Therefore, when weskip an edgee that enters
a component, it is sufficient to pretend thate belongs to levelℓ(e) − 1 instead ofℓ(e),
i.e., we can redefinêℓs to be equal tomaxe∈Es

ℓ′(e), whereℓ′(e) := ℓ(e) − 1, if e enters a
component, andℓ′(e) := ℓ(e), otherwise.

However, we have to deal with the special case that the root ofan attached tree does
not belong to the core, but to a line. When such a root is reached, its outgoing edges,
including the shortcuts to the endpoints of the line, are relaxed immediately so that it is
ensured that the preceding statements apply to this specialcase as well.

2. For eachx ∈ {s, t} and each levelℓ, we manage a valueδx,ℓ = min(u,v)∈Ex,ℓ
d(x, v),

whereEx,ℓ := {e ∈ Ex | ℓ′(e) = ℓ}. δx,ℓ is the minimum distance fromx to the endpoint
v of a level-ℓ′-edge(u, v) that has been skipped. Letx̄ = t if x = s and vice versa, and
let ū be the minimum element in the priority queue ofx̄. When a tentative shortest path
P from s to t has been found andδx,ℓ + d(x̄, ū) ≥ w(P), then we can ignore the fact that
level-ℓ′-edges have been skipped in the search scope ofx, i.e., we can pretend thatEx,ℓ

is empty, because it is certain that we will not find anothers-t-path that contains an edge
e ∈ Ex,ℓ and is shorter thanP .

3. Let us consider the search started froms. Between the meeting of both search scopes and
the fulfilment of the advanced abort criterion, we do not haveto relax edges from nodes
vℓ that belong to a levelℓ > ℓ̂t, unlessvℓ belongs to a component in levelℓ andℓ = ℓ̂t +1.
Since the highway hierarchy does not contain any downward edges, the continuation of
the search in the higher levels does not provide any chances of finding a shorter path that
uses a reverse edge of a skipped edge in a lower level. The sameargument applies to the
search started fromt.

Corollary 7 For any givens, t ∈ V , the improved multilevel query algorithm finds the
shortest path froms to t in G.

Proof (Sketch):Follows from Theorem6, Lemma4, Lemma8, and some remarks in Sec-
tion 4.2and4.3. �

32

Chapter 5

Implementation

An exhaustive description of the implementation would go beyond the scope of this thesis so
that we restrict ourselves to some important aspects. The program was written in C++ from
scratch, not using any libraries, except for the C++ Standard Template Library. We make
extensive use ofgeneric programmingtechniques using C++’s template class mechanism.
This applies to the graph data structure (Section5.1.1), the priority queue (Section5.1.2),
and the implementation of DIJKSTRA’s algorithm (Section5.3). Our current implementation
leaves room for reducing both running time and memory usage.The main program and the
auxiliary programs1 consist of 4 555 and 2 415 lines of code, respectively.

5.1 Data Structures

5.1.1 Graph Representation

The graph representation is based on the remarks in Section4.2. We distinguish between a
dynamic and a static version of our graph data structure. Thedynamic version is used during
the construction, while the graph is modified, particularly, due to the addition of shortcuts.
Then, we switch to the static version, which is more compact and allows efficient traversals
of the graph; it is used by the queries.

Static Graph. After the construction has been completed, the graph is static, i.e., there is
no need of incorporating any changes while queries are processed. Therefore, we represent
the graph in anadjacency array, which is very space-efficient and allows fast traversal of
the graph. The undirected graph is represented as a bidirected graph, i.e., each undirected
edge is represented as two directed edges. There are two arrays, one for the nodes (Node)2

and one for the edges (Edge). The edges are grouped by the source node and store only the
ID of the target node and the weight. Each nodeu ‘knows’ the index of its first outgoing
edge in the edge array. Furthermore, it stores the level 0 neighbourhood radiusd0

H(u). In
order to deal with the additional requirements of the highway hierarchy, we extend this data
structure in the following way. For each nodeu, all outgoing edges(u, v) are grouped by

1The auxiliary programs provide functionality to convert different graph file formats, draw graphs, and
evaluate log files.

2Class names that will appear in Fig.5.2are given in parentheses.

33

the maximum levelℓ(u, v) they belong to. Between the node and the edge array, we insert
another layer: for each nodeu and each levelℓ > 0 thatu belongs to, there is alevel node
uℓ (StaticLevelNode) that stores the valuedℓ

H(v) and the index of the first outgoing
edge(u, v) with the maximum levelℓ. All level nodes are stored in a single array. Each
nodeu knows the index of the level nodeu1. Figure5.1illustrates the graph representation.
Furthermore, each node belongs to at most one component (Component), which belongs
to a certain level.

d1
H d2

H d3
H d4

H

d0
H d0

Hnodes

level nodes

edges

· · ·

· · ·

d3
Hd2

Hd1
H · · ·

Figure 5.1:Adjacency array, extended by a level node layer.

Dynamic Graph. During the construction, the graph is modified in two respects: first,
already existing edges are added to the next level of the highway hierarchy, i.e., the maxi-
mum level of the edges is increased; second, new edges, namely shortcuts, are added. We
use a variant of the static graph data structure to handle this dynamic situation. When an
edge(u, v) is promoted to the next level,u’s edges are regrouped by a simple swap oper-
ation and the concerned level node updates the index of its first outgoing edge. The level
nodes (DynamicLevelNodes) are not stored in an array, but in a linked list in order to
allow the insertion of new level nodes. In an additional edgestack, we store new edges
(CompleteLeveledEdge). Shortcuts from tree nodes to the root and from inner nodes
to the endpoints of a line are added to this stack. Shortcuts between both endpoints of a
line arenot added to the stack. Instead, in the main edge array, we replace both edges that
lead from the endpoints to the first respective inner node by the new shortcuts. The replaced
edges are pushed on the stack. That way, we make sure that the stack contains only edges
that are irrelevant to the further construction process.

When the construction has been completed, the dynamic graphis converted into the
static graph. All level nodes are sorted into an array: a level nodeuk precedesvℓ iff u < v
or u = v andk < ℓ. The additional edges are sorted by source node and level. They are
merged with the original edge array in order to obtain one edge array that contains all edges.
Figure5.2gives a UML class diagram3 [3] of the concerned classes.

3In our UML class diagrams, alldependenciesare stereotyped as bind, i.e., they are used to represent the
instantiation of a template class with actual parameters. However, for the sake of clarity, we omit the keyword
<<bind>> in each of these cases. Furthermore, we enhance the concept of generalisationby providing
template parameters for the superclass: we extend the instantiation of a template class without explicitly
representing the instantiation.

34

StaticGraphTemplate

LevelNodes:typename

StaticGraphDynamicGraph

<DynamicLevelNodes>

Edge

+weight(): EdgeWeight

+isHighwayEdge(): bool

+isShortcut(): bool

CompleteEdge

CompleteLeveledEdge

+level(): LevelID

StaticLevelNode

+dH(): EdgeWeight

LinkedLevelNode

DynamicLevelNode

+level(): LevelID
Node

nextLevel
target

DynamicLevelNodes
StaticLevelNodes

 *

 1

additional edges

Component

+level(): LevelID

belongs to

Components

 *

 1

firstEdge

source
level 0 node

1

*

1

*

1

1

1

1

*

*

<StaticLevelNodes>

1

11

1

Figure 5.2:A UML class diagram of the graph representation.

5.1.2 Priority Queue

The priority queue is implemented as a binary heap (BinaryHeap) (e.g. [7]), which is
realised as a template class. Its elements (BinaryHeapElement) are composed of a
key and associateddata. The key specifies the priority of an element, i.e., adeleteMin
operation returns the element with the smallest key. The data object contains application-
specific attributes, e.g., the index of the parent in the shortest path tree. A node (Node)
has two pointers to elements in the priority queue, one for the forward search and one for
the backward search. Thus, we separate the data that is related to the search process from
the representation of the static graph: Initially, each node has only two unused pointers to
binary heap elements. Not until a node is reached during a search, it is added to the priority
queue and enhanced by additional data that are stored insidethe binary heap element. This
approach is reasonable with respect to the space consumption because only a small fraction
of the nodes is reached during a multilevel query.

We need several variants of the priority queue, realised by appropriate instantiations
and extensions of the binary heap template class: a normal variant (NormalPQueue)

35

that is used by DIJKSTRA’s algorithm, a variant used by the multilevel query algorithm
(HwyPQueue), and a variant used during the construction (ConstrPQueue). For the first
two variants, we use the tentative distance (of typeEdgeWeight) as key. For the con-
struction, we need a priority queue that has theFIFO property(FIFOBinaryHeap) (see
SectionA.1), i.e., if there is more than one minimum element, then the older element is
removed first. For this purpose, we can extend the binary heapusing the tuple (tentative dis-
tance, timestamp) as key (see SectionA.2). Each variant of the binary heap has its respective
elements (NormalPQElement, HwyPQElement, ConstrPQElement). The data ob-
ject (PQueueNode) that belongs to a normal priority queue element contains the indices of
the parent node in the shortest path tree and of the edge from the parent. The data objects that
belong to the other two priority queue elements are extensions ofPQueueNode. In case
of the multilevel query, the data object (PQueueNodeHwySearch) contains, in addition,
the search level and the distance to the border of the neighbourhood of the current entrance
point. In case of the construction, the data object (PQueueNodeConstruction) con-
tains the slack and values that are required to test the abortcriterion. Figure5.3 gives an
overview in the form of a UML diagram.

BinaryHeap

Data:typename

Key:typename

FIFOBinaryHeap

Data:typename

<Data, pair<EdgeWeight, NodeID> >

NormalPQueue HwyPQueue ConstrPQueue

<PQueueNodeConstruction>

<PQueueNodeHwySearch, EdgeWeight>

<PQueueNode, EdgeWeight>

BinaryHeapElement

Data:typename

Key:typename

Node

NormalPQElement HwyPQElement ConstrPQElement

<PQueueNode, EdgeWeight>

<PQueueNodeHwySearch, EdgeWeight>

<PQueueNodeConstruction,

pair<EdgeWeight, NodeID> >

PQueueNode

PQueueNodeHwySearch

PQueueNodeConstruction

1

2

1

*

1

1

1

1

1

1

Figure 5.3:A UML class diagram of the priority queue and related classes.

36

5.2 Construction

Exact Arithmetic. In order to guarantee the uniqueness of the canonical shortest paths,
it is important to exclude arithmetic inaccuracies. Therefore, the edge weights are integers
between 0 and253 and are stored in double-precision floating-point numbers,which allow
exact arithmetic in this range. If necessary, given edge weights are mapped to this range in
such a way that it is ensured that the length of a shortest pathnever exceeds253.

Initial Step. For each nodes0 ∈ V , we compute and store the valuedH(s0). This can be
easily done by a DIJKSTRA search from each nodes0 that is aborted as soon asH nodes
have been settled.

Phase 1. The abort criterion presented in Section3.1can be refined in the following way:

When a nodep is settled using the pathP ′ = 〈s0, s1, . . . , p〉, thenp’s state is set
to passive ifp 6∈ N(s1) and|P ′ ∩ N(s1) ∩ N(p)| ≤ 1.

Lemma 9 The refined abort criterion does not invalidate Theorem1.

Proof: In the proof of Theorem1, in order to obtain a contradiction, we had to show that
there were at least two nodes inN(s1) ∩ N(p), namelyu andv. Due to the refined abort
criterion, we now have to prove that, under the same assumptions, there are at least two
nodes inN(s1) ∩ N(p) that belong toP |s0→p = 〈s0, s1, . . . , p〉 as well. We know thatu
is not a predecessor ofs0 (due to the choice ofs0). Furthermore,v cannot be a successor
of p. (If v was a successor ofp, Lemma1 would yieldp ∈ N(s1) sincev ∈ N(s1). This
would be a contradiction to the first part of the refined abort criterion (p 6∈ N(s1)).) Hence,
u, v ∈ P |s0→p. �

This criterion, in turn, can be reformulated to obtain:

When a nodep is settled using the path〈s0, s1, . . . , u, v, w, . . . , p〉, where
d(s1, v) ≤ dH(s1) < d(s1, w), thenp’s state is set to passive ifp is a successor
of v andd(u, p) > dH(p).

Lemma 10 (p 6∈ N(s1) and |P |s0→p ∩ N(s1) ∩ N(p)| ≤ 1) ⇔ (p is a successor ofv and
d(u, p) > dH(p)), i.e., both formulations of the refined abort criterion are equivalent.

Proof: It is easy to see that “p 6∈ N(s1)” and “p is a successor ofv” are equivalent. We
still have to prove that|P |s0→p ∩ N(s1) ∩ N(p)| ≤ 1 ⇔ d(u, p) > dH(p)), provided that
p 6∈ N(s1) [*] is true.

⇐) d(u, p) > dH(p) impliesu 6∈ N(p). Furthermore, we havew 6∈ N(s1). Hence, we
obtain (by Lemma1) ∀x ∈ P |s0→u : x 6∈ N(p) (sincep is a successor ofu (due to [*])), and
∀x ∈ P |w→p : x 6∈ N(s1). Thus, onlyv can belong toP |s0→p ∩ N(s1) ∩N(p).

⇒) We prove the contraposition.d(u, p) ≤ dH(p) implies u ∈ N(p). Furthermore,
we havev ∈ N(s1). Lemma3 yields u, v ∈ N(s1) ∩ N(p). Due to its definition,u
cannot be a predecessor ofs0. Furthermore,v cannot be a successor ofp. (Otherwise, since
v ∈ N(s1), Lemma1 would yield p ∈ N(s1), which would be a contradiction to [*].)
Hence,u, v ∈ P |s0→p ∩N(s1) ∩N(p). �

37

This version of the criterion can be tested efficiently: In order to find the first nodew
outsideN(s1), the distance to the border of the neighbourhood ofs1 is set todH(s1) at the
nodes1; each descendanty of s1 adopts the distance to the border from its parentx in B and
decreases it by the weight of the edge(x, y). w is found as soon as this value gets negative.
In order to be able to computed(u, p), each descendant ofv adopts the valued(s0, u) from
its parent. Since the distance froms0 to the current node is always known, we can use the
formulad(u, p) = d(s0, p) − d(s0, u) to obtain the required value.

Corollary 8 The refined abort criterion preserves the correctness of theconstruction pro-
cess and can be tested in constant time for each node that is settled.

Note that the refined abort criterion can increase the growthof B in some cases because
|N(s1) ∩ N(p)| ≤ 1 only implies|P |s0→p ∩ N(s1) ∩ N(p)| ≤ 1, but notp 6∈ N(s1), i.e.,
sometimes the refined abort criterion is not fulfilled when the original criterion is fulfilled.
However, the following lemma states that this overhead is limited.

Lemma 11 If the original abort criterion is fulfilled for some nodep while the refined crite-
rion is not, andq is a direct successor ofp on a shortest path, then the refined abort criterion
is fulfilled for q.

Proof: We assume that|N(s1) ∩ N(p)| ≤ 1, but p ∈ N(s1), i.e., the original criterion is
fulfilled, but the refined one is not. Letq be an arbitrary direct successor ofp on a shortest
path. In order to obtain a contradiction, let us assume thatq ∈ N(s1). Then, Lemma2 yields
q ∈ N(p). Hence,p, q ∈ N(s1) ∩ N(p), which is a contradiction to|N(s1) ∩ N(p)| ≤ 1.
Therefore, we can conclude thatq 6∈ N(s1). Furthermore,|N(s1) ∩ N(p)| ≤ 1 implies
|P |s0→p ∩N(s1) ∩N(p)| ≤ 1. In order to obtain a contradiction, we assume that|P |s0→q ∩
N(s1) ∩ N(q)| > 1. Since we already know thatq 6∈ N(s1), there has to be a nodex on
P |s0→p that belongs toN(q), but not toN(p). This is a contradiction to Lemma2. Thus, we
have|P |s0→q ∩ N(s1) ∩ N(q)| ≤ 1 so that the refined abort criterion is fulfilled forq. �

During the search of Phase 1, a list of all leaves ofB is managed: when a node is settled,
it is added to the list and its parent is removed from it. This list is the starting point for
Phase 2.

Phase 2. The implementation of Phase 2 is straightforward and based on the detailed de-
scription in Section3.1.

Final Step. After all nodess0 have been processed,G1 is made bidirected by adding edges
(v, u) to E1 if (u, v) already belongs toE1.

Contraction. For each nodeu of degree one, we determine its only (unused) edge, which
leads to its parentp in the tree.p is added to the list of roots (which is initially empty) andu
is removed from the list (if applicable). The edge(p, u) is marked as used, and the degrees
of p andu are decremented. If the remaining degree ofp is one, these steps are applied
recursively top. After all nodes of degree one have been processed, each rootr initiates a
traversal of the corresponding tree and broadcasts its own ID and a unique ID for the tree:
each nodeu of the tree (except the root) stores the tree ID and creates a directshortcutto the
root, i.e., a directed edge(u, r) whose weight is equal to the length of the already existing
path fromu to r. The implementation of the line contraction is straightforward.

38

5.3 Query
We provide a template class that implements several versions of DIJKSTRA’s algorithm. By
instantiating it with appropriate template parameters, itcan be used for the normal version of
DIJKSTRA’s algorithm, the bidirectional version of DIJKSTRA’s algorithm, the computation
of dH(·), the construction, and the multilevel query. The implementation of the multilevel
query algorithm is based on the remarks in Section4.2. The compliance with both restric-
tions (cp. Section4.1) is ensured in the following way:

1. No horizontal edge in levelℓ is relaxed that would leave the neighbourhoodN ℓ(v∗) of
the corresponding entrance pointv∗.

Each node that has been reached during the search knows its search level and the distance
to the border of the neighbourhood of the current entrance point (cp. Section5.1.2). Ini-
tially, the search levels ofs andt are set to 0 and the distance-to-border values tod0

H(s)
andd0

H(t), respectively. When a nodev is reached, it adopts the search level from its
parentp and the distance value minus the weight of(p, v). If this value gets negative, the
neighbourhood of the corresponding entrance point would beleft. Therefore, the search
level of v is incremented, i.e., we try to switch to the next levelℓ. If the maximum level
of (p, v) is less than the new search level, this attempt fails: the edge cannot be relaxed.
Otherwise,p is the entrance point to the new search level: the distance-to-border value of
v is set todℓ

H(p) − w(p, v).

If a nodep belongs to the core and has been settled via a horizontal edgethat leaves a
component, it is an entrance point. The distance-to-bordervalues of all its childrenv are
set todℓ

H(p) − w(p, v).

2. Components are never entered using a horizontal edge.

Let c be a component that belongs to levelℓ, and(u, v) an edge that enters the component
c. Thus,(u, v) belongs to levelℓ as well. During the construction process, when the com-
ponentc is contracted, the level of the directed edge(u, v) (that entersc) is decremented
by one, while the level of the reverse edge(v, u) (that leavesc) remains unchanged – this
distinction is possible because we use a bidirected graph representation. By this means,
there is no need of explicit checks during the query, but Restriction 2 is respected au-
tomatically: a component in levelℓ cannot be entered using a horizontal edge since all
crucial edges have been downgraded so that they do not appearin levelℓ.

The implementation comprises the basic abort-on-success criterion and all three improve-
ments as described in Section4.3.

Each node in the shortest path tree stores a pointer to its parent. When we follow these
pointers starting from the optimal meeting point of both search scopes until we reachs andt,
we can reconstruct the shortest path. In order to do so, we have to expand shortcut edges so
that we obtain the complete path in the original graph. We provide a basic recursive routine
to solve this problem: When an endpointu of a shortcut(u, v) is discovered, all outgoing
edges(u, x) of u are scanned in order to find the right one that leads inside a corresponding
line tov. We can easily check whetherx is the right node due to the fact that all nodes inside
a line have shortcuts to both endpoints of the line. Hence, ifthere is a shortcut(x, v) such
thatw(u, x) + w(x, v) = w(u, v), thenx is the right node. If the edge(u, x) is a shortcut as
well, we apply the expansion routine recursively. Then, we go on to look for the next node
y on a line that eventually leads tov.

39

Chapter 6

Experiments

We conducted extensive experiments in order to evaluate theperformance of our approach.
In total, the experiments took more than 1 190 hours of computing time. 3 930 131 909 670
deleteMinoperations were logged.

6.1 Environment and Instances

Environment. The experiments were done on a 64-bit machine with 8 GB main memory
and 1 MB L2 cache, using one out of four AMD Opteron processorsclocked at 2.2 GHz,
running SuSE Linux (kernel 2.6.5). The program was compiledby the GNU C++ compiler
3.3.3 using optimisation level 3.

Instances. Basically, we deal with two test instances, namely, the roadnetworks of the
United States of America and of Western Europe (Fig.6.1and6.2). The former represents
the road network of the District of Columbia and the 48 contiguous states (all but Alaska
and Hawaii). It was obtained from the TIGER/Line Files [40] by extracting the relevant
data of all counties and merging them. The latter comprises 14 European countries, namely,
Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands, Nor-
way, Portugal, Spain, Sweden, Switzerland, and the UK. The data has been made available
for scientific use by the company PTV AG. In some cases, we restrict our experiments to
the German road network. In all cases, as we deal with undirected graphs, we ignored the
restrictions caused by one-way streets.

The original graphs contain for each edge a length and a road category. In the USA,
there is the distinction between

• primary highways with limited access (e.g. interstate highways),

• primary roads without limited access (e.g. US highways),

• secondary and connecting roads (e.g. state highways), and

• local, neighbourhood, and rural roads.

In the European road network, there are 13 different categories. Each of these categories
belongs to one out of four supercategories, namely

40

Figure 6.1:Road network of the USA. The colours indicate the road category: primary
highway with limited access, primary road without limited access, secondary and connect-
ing road. The slowest category (local, neighbourhood, and rural road) has been omitted in
this figure.

Figure 6.2:Road network of Western Europe. The colours indicate the road category:
ferry, motorway, national road, regional road. The slowest category (urban street) has
been omitted in this figure.

41

• motorway,

• national road,

• regional or local road, or

• urban street.

We assign average speeds to the road categories, compute foreach edgee the average travel
time, and use it as the weight ofe. In addition, our European graph contains edges that
represent ferry connections. For these edges, the average travel times are already given
in the input so that we can adopt them as edge weights. Table6.1 summarises important
properties of the used road networks and the key results of the experiments.

Table 6.1: Overview of the used road networks and key results. The parameter H is
used iteratively until the construction leads to an empty highway network. We provide
average values for 10 000 queries, where the source and target nodes are chosen randomly.
‘Speedup’ refers to a comparison with DIJKSTRA’s algorithm1. ‘Efficiency’ [14] denotes
the number of nodes that belong to the computed shortest paths divided by the number of
nodes that are settled by the multilevel query algorithm. For Germany, we give the memory
usage on a 32-bit machine in parentheses.

USA Europe Germany

input

#nodes 24 278 285 18 029 721 4 345 567
#edges 29 106 596 22 217 686 5 446 916
#degree 2 nodes 7 316 573 2 375 778 604 540
#road categories 4 13 13

parameters
average speeds [km/h] 40–100 10–130 10–130
H 225 125 100

construction
CPU time [h] 4.3 2.7 0.5
#levels 7 11 11

query

CPU time [ms] 7.04 7.38 5.30
#settled nodes 3 912 4 065 3 286
speedup (CPU time) 2 654 2 645 680
speedup (#settled nodes) 3 033 2 187 658
efficiency 113% 34% 13%
main memory usage [MB] 2 443 1 850 466 (346)

6.2 Parameters
Fast vs. Precise Construction. During various experiments, we came to the conclusion
that it is a good ideanot to take a fixed maverick factorf for all levels of the construction
process, but to start with a low value (i.e. fast construction) and increase it level by level
(i.e. more precise construction). Table6.2 contains the construction time and the average
query time for several sequences of maverick factors. In addition to the criteriond(s0, v) >
f · dH(s0) presented in Section3.2, we considered to usew(u, v) > f · dH(s0) as maverick
criterion, whereu is the (tentative) parent ofv in the shortest path tree, i.e., the decisive
factor is the length of the incoming edge but not the distancefrom the source node. Good
results were obtained ford(s0, v) > f · dH(s0) as maverick criterion using0, 2, 4, 6, . . . as
sequence of maverick factors. These parameters were used for all experiments that follow.

1The averages for DIJKSTRA’s algorithm are based on only 1 000 queries.

42

Table 6.2:Fast vs. precise construction: maverick criterionx > f · dH(s0). The first
group of experiments starts with the fastest construction method (f = 0) and switches to
a fixedf > 0. In the second and third group,f is increased by adding 2 and multiplying
by 2, respectively. If the results for one test instance did not show promise, the other test
instance was skipped (resulting in blank entries in the table). A very good choice off and
x is marked.

Europe USA
f x constr [h] query [ms] constr [h] query [ms]

0 0 4 d(s, v) 2.2 9.57
0 0 4 w(u, v) 2.7 8.25
0 0 8 w(u, v) 2.9 8.05
0 0 16 w(u, v) 3.2 7.88
0 0 32 w(u, v) 3.9 7.73
0 0 64 w(u, v) 5.1 7.47

0 0 4 6 8 10 w(u, v) 2.7 7.76
0 2 4 6 8 10 d(s,v) 2.3 7.91 4.2 7.48
0 2 4 6 8 10 w(u, v) 5.9 7.14
0 0 4 8 16 d(s, v) 2.5 7.79
0 0 4 8 16 w(u, v) 2.7 7.34
0 1 2 4 8 d(s, v) 2.2 9.21 3.8 8.06
0 1 2 4 8 w(u, v) 3.2 7.14 5.6 7.17
1 2 4 8 16 w(u, v) > 12

Best Neighbourhood Sizes. For two levelsℓ andℓ+1 of a highway hierarchy, theshrink-
ing factor is defined as the ratio between|E ′

ℓ| and|E ′
ℓ+1|. In our experiments, we observed

that the highway hierarchies of the USA and Europe were almost self-similar in the sense
that the shrinking factor remained nearly unchanged from level to level when we used the
same neighbourhood sizeH for all levels. We kept this approach and applied the sameH
iteratively until the construction led to an empty highway network. Table6.3 shows our
results for various values ofH.

Table 6.3:Choice of good neighbourhood sizes. For different neighbourhood sizesH,
we compare the construction time, the number of levels in thehighway hierarchy, and,
for queries between random source and target nodes, the average number of settled nodes
and the average query time. The neighbourhood size that has been chosen for further
experiments and the minima in the query columns are marked.

USA Europe
Construction Query Construction Query

H t[h] #level #nodes t[ms] H t[h] #level #nodes t[ms]
100 2.3 18 5748 13.02 50 1.8 30 7476 19.37
150 3.0 11 4142 8.22 75 1.9 17 4581 9.81
175 3.4 9 3952 7.51 100 2.3 13 4103 8.20
200 3.8 8 3895 7.19 125 2.7 11 4065 7.38
225 4.3 7 3912 7.04 150 3.1 10 4119 7.15
250 4.7 7 3955 7.04 175 3.6 9 4256 7.19
300 5.6 6 4109 7.05 200 4.0 9 4413 7.19
400 7.5 6 4517 7.25 300 6.1 7 4962 7.86

43

Figure6.3demonstrates the shrinking process for Europe. Provided that the neighbour-
hood size is sufficiently large, we observe an almost constant shrinking factor for most levels
(which appears as a straight line due to the logarithmic scale of the y-axis). The greater the
neighbourhood size, the greater the shrinking factor. The first iteration (level 0→1) and the
last few iterations show a different behaviour: in the first iteration, the construction works
very well due to the characteristics of the real world road network (there are many trees and
lines that can be contracted); in the last iterations, the highway network collapses, i.e., it
shrinks very fast, because nodes that are close to the borderof the network usually do not
belong to the next level of the highway hierarchy, and when the network gets small, almost
all nodes are close to the border. Figure6.4 shows a similar shrinking process for the road
network of the USA.

107

106

105

104

1000

100

10

1
 0 2 4 6 8 10 12 14 16

#e
dg

es

level

H = 75
H = 125
H = 175
H = 300

Figure 6.3:Shrinking of the highway networks of Europe. For different neighbourhood
sizesH and for each levelℓ, we plot|E′

ℓ|, i.e., the number of edges that belong to the core
of level ℓ.

107

106

105

104

1000

100

10

1
 0 2 4 6 8 10 12 14 16 18

#e
dg

es

level

H = 100
H = 150
H = 200
H = 300
H = 400

Figure 6.4:Shrinking of the highway networks of the USA, analogous to Fig. 6.3.

44

6.3 Multilevel Queries

Average Values. Table6.1contains average values for queries, where the source and target
nodes are chosen randomly. For the two large graphs we get a speedup of more than 2 000
compared to DIJKSTRA’s algorithm with respect to both query time2 and the number of
settled nodes.

For our largest road network (USA), the number of nodes that are settled during the
search isless than the number of nodes that belong to the shortest paths that are found.
Thus, we get an efficiency that is greater than 100%. The reason is that edges at high levels
will often represent long paths containing many nodes.3

Local Queries. For use in applications it is unrealistic to assume a uniformdistribution of
queries in large graphs such as Europe or the USA. On the otherhand, it would be hardly
more realistic to arbitrarily cut the graph into smaller pieces. Therefore, we decided to mea-
sure local queries within the big graphs: For each power of two r = 2k, we choose random
sample pointss and then use DIJKSTRA’s algorithm to find the nodet with DIJKSTRA rank
rs(t) = r. We then use our algorithm to make ans-t query. By plotting the resulting statis-
tics for each valuer = 2k, we can see how the performance scales with a natural measureof
difficulty of the query. Figure6.5 shows the query times. The speedup with respect to DI-
JKSTRA’s algorithm is shown in Fig.6.6. Note that the median query times are scaling quite
smoothly and the growth is much slower than the exponential increase we would expect in a
plot with logarithmicx axis, lineary axis, and any growth rate of the formrρ for DIJKSTRA

rankr and some constant powerρ. The curve is also not the straight line one would expect
from a query time logarithmic inr.

Against the trend, the query times in Europe drop at DIJKSTRA rank224. This rank is
very close to the total number of nodes, which means that the target node is always close to
the border of the road network. In general, the multilevel query algorithm does not exhibit
any goal-directed behaviour, i.e., the search space extends in all directions. However, when
the search is started from the border, it gets a ‘trivial sense of direction’ because it cannot
spread in all directions. Therefore, the query times improve.

The average running time of queries in the German road network is 5.30 ms (cp. Ta-
ble 6.1). Since the German road network consists of roughly222 nodes, we can expect an
average DIJKSTRA rank of about221 for queries between nodes that are picked at random.
The average running time of queries in the European road network from a random nodes
to a nodet with DIJKSTRA rank221 is 5.29 ms. These results suggest that there is virtually
no difference between executing the same query within the German or the European road
network. This means that we can use a large road network (e.g.Europe) for all kinds of
queries; it is not necessary to restrict the search to a part of it (e.g. Germany) in order to get
fast queries within this part.

2It is likely that Dijkstra would profit more from a faster priority queue than our algorithm. Therefore, the
time-speedup could decrease by a small constant factor.

3The reported query times do not include the time for expanding these paths. We have made measurements
with our naive recursive expansion routine (cp. Section5.3) which never take more than 50% of the query time.
Also note that this process could be radically sped up by precomputing unpacked representations of edges.

45

Dijkstra Rank

Q
ue

ry
 T

im
e

[m
s]

211 212 213 214 215 216 217 218 219 220 221 222 223 224

0
1

2
3

4
5

6
7

8
9

10
11

12
13

0
1

2
3

4
5

6
7

8
9

10
11

12
13

USA
Europe

Figure 6.5:Multilevel Queries. For each road network and each DIJKSTRA rank on the x-
axis, 1 000 queries from random source nodes were performed.The results are represented
as box-and-whisker plot [24]: each box spreads from the lower to the upper quartile and
contains the median, the whiskers extend to the minimum and maximum value omitting
outliers, which are plotted individually.

Dijkstra Rank

S
pe

ed
up

 (
#s

et
tle

d
no

de
s)

211 212 213 214 215 216 217 218 219 220 221 222 223 224

2
5

10
20

50
20

0
10

00
50

00

2
5

10
20

10
0

50
0

20
00

USA
Europe

Figure 6.6:Multilevel Queries. Speedup in terms of number of settled nodes.

46

Worst Case. In order to determine the worst case for a query between two locations in
Europe or the USA, we would have to perform alln2 possible queries, which would bevery
time-consuming. However, we can provide anupper boundfor the worst case executing only
n queries: We add an isolated dummy nodet to the graph and run ones-t query for each node
s. Of course, the search fromt terminates immediately, while the search froms explores
the complete search space since the abort-on-success criterion never applies. Obviously, the
worst case cannot be worse than twice the maximum of thesen queries. By this means, we
obtained an upper bound for the number of settled nodes for queries in Europe (the USA) of
10 326 (8 678), i.e., no more than 0.057% (0.036%) of all nodesare ever settled.

Histograms of these experiments are given in Fig.6.7 and6.8. We find that the costs
of a search differ from source node to source node. Although most source nodes cause
similar costs, there are a few outliers. We further investigated the costs with respect to
the geographic location of the source node. Figure6.9 indicates that the search from a
congested urban area is rather easy, while the search from a rural area that is surrounded
by several urban areas is rather difficult. The road network of a congested urban area is
very compact. While the neighbourhood size in terms of the number of nodes is always the
same, the geometric neighbourhood size is comparatively small in a city. Hence, the search
switches to higher levels before spreading too far away. Thus, in the first levels, the search
space stays compact and the scope of the different entrance points overlap. In contrast, the
search started from a rural area spreads very far away beforeswitching to higher levels. If it
enters several surrounding urban areas when it is still in a low level, it gets quite expensive
because it has to traverse all of them starting in a very detailed level.

Furthermore, Fig.6.9 confirms our earlier statement that the search from nodes close
to the border is comparatively easy: for instance, the search from the eastern border of
Germany is easy due to the fact that the road networks of Poland and the Czech Republic do
not belong to our test instance.

Distance Instead of Travel Time. Using travel times as edge weights intensifies the hier-
archical properties of real world road networks, which is the foundation of our approach. If
we use spatial distance as edge weights, the road networks still exhibit a (less distinct) hi-
erarchy. We performed several experiments with the German road network using distances
as edge weights. In this case, the effect of self-similarity, which we observed during previ-
ous experiments, did not occur, i.e., the shrinking factor decreased when we used the same
neighbourhood sizeH iteratively. However, we obtained good results for a highway hierar-
chy consisting of seven levels, where we doubled the neighbourhood size in each iteration
of the construction procedure, starting with 100. This led to an average query time of 32 ms;
the speedup in terms of the number of settled nodes compared to DIJKSTRA’s algorithm was
122.

47

#settled nodes

F
re

qu
en

cy
 (

*
1

00
0

00
0)

1612 2000 2500 3000 3500 4000 4500 5163

0
0.

5
1

1.
5

2
2.

5

(a) linear scale

#settled nodes

lo
g(

 F
re

qu
en

cy
)

0
5

10
15

1612 2000 2500 3000 3500 4000 4500 5163

(b) logarithmic scale

Figure 6.7:Histogram of unidirectional queries in Europe. The minimumand maximum
costs are given explicitly as x-axis labels. Note that in (a)the extreme outliers are not
visible because their frequency is very small. Queries fromnodes that do not belong to the
largest connected component of the road network have been omitted since they cause only
very small costs, which cannot be compared directly to the other values.

48

#settled nodes

F
re

qu
en

cy
 (

*
1

00
0

00
0)

1595 2000 2500 3000 3500 4000 4339

0
0.

5
1

1.
5

2
2.

5
3

Figure 6.8:Histogram of unidirectional queries in the USA, analogous to Fig.6.7(a).

xxx easy
xxx
xxx

...
xxx
xxx
xxx
xxx
xxx difficult

Figure 6.9:Unidirectional queries in Europe, clipped by a bounding boxaround Germany.
Each node is coloured by the costs of a search started from it.

49

Chapter 7

Discussion

Conclusion

Starting from a simple definition of local search, we have developed nontrivial algorithms
for constructing and querying highway hierarchies. We havepresented strong evidence that
highway hierarchies of the largest road networks currentlyused can be constructed in a few
hours, i.e., fast enough to allow daily updates. The space consumption is only a small con-
stant factor of the input size. The query times around 8 ms aremore than fast enough for
interactive use. In particular, overhead for the user interface (and possible internet communi-
cation) will probably dominate the interactive delays. Theonly previous speedup techniques
that would achieve comparable speedup (bit vectors, geometric containers) have prohibitive
preprocessing times for very large graphs.

Future Work

The current implementation supports only undirected graphs. At some points in this thesis,
we have indicated how the implementation can be generalisedin the future so that it can
deal with directed graphs. Even faster preprocessing is a major issue for future work. We
see many small (and not so small) opportunities for improvement. Obviously, parallelisa-
tion will yield a significant speedup. Adaptive neighbourhood sizes could benefit both the
construction and the query. The local nature of preprocessing makes it likely that highway
hierarchies can be quickly updated dynamically when only a few edges (e.g., for taking traf-
fic jams into account) or a region of the network changes. Furthermore, multiple objective
functions can be handled by a single highway hierarchy that is the union of the highway
hierarchies for the individual objective functions. It seems likely that highway hierarchies
for multiple reasonableobjective functions have a very big overlap so that their union will
still be useful.

Even faster queries are also interesting. For example, for some traffic simulations, mil-
lions of shortest paths queries are needed and there is no overhead for a user interface.
Besides many small improvements (e.g. faster priority queues) a combination with other
speedup techniques seems interesting. In particular, bit vectors, geometric containers, or
landmarks give the search a strong sense of direction (Fig.7.1) that highway hierarchies
lack (Fig. 7.2). Thus, these two basic approaches may complement one another, i.e., we
could achieve a significant improvement if we restricted thesearch space of our approach to

50

the intersection with the search space of a goal directed approach (Fig.7.3). Moreover, the
higher levels of the hierarchy are so small that superlineartime or space may be tolerable as
long as the contributions of the lower levels can be incorporated efficiently.

Highway hierarchies are also promising for handling graphsthat are too large for fast
internal memory and only fit on hard disks of PCs or into the slow flash memory of mobile
devices: The higher levels fit into fast memory and the lower levels are only searched lo-
cally. Hence, by packing local patches of the graph into the same external memory block,
local searches should only need a small number of block accesses.

s t

Figure 7.1:Schematic representation of the search space of a goal directed approach. The
search froms andt does not spread uniformly into all directions, but tends to the respective
goal.

s t

Figure 7.2:Schematic representation of the search space of our approach based on high-
way hierarchies. The search froms andt spreads uniformly into all directions. However,
in contrast to Fig.7.1, the search space gets thinner and thinner.

Figure 7.3:Intersection of the search spaces represented in Fig.7.1and7.2.

51

Bibliography

[1] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for the
shortest path problem.Journal of the ACM, 37(2):213–223, 1990.

[2] V. Batagelj and M. Zaversnik. AnO(m) algorithm for cores decomposition of net-
works. CoRR, cs.DS/0310049, 2003.

[3] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide.
Addison-Wesley, 1999.

[4] U. Brandes, F. Schulz, D. Wagner, and T. Willhalm. Travelplanning with self-made
maps. In3rd Workshop on Algorithm Engineering and Experiments, volume 2153 of
LNCS, pages 132–144. Springer, 2001.

[5] U. Brandes, F. Schulz, D. Wagner, and T. Willhalm. Generating node coordinates for
shortest-path computations in transportation networks.ACM Journal of Experimental
Algorithmics, 9(1.1), 2004.

[6] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortestpath algorithms: Theory
and experimental evaluation.Math. Programming, 73:129–174, 1996.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms.
MIT Press, 2nd edition, 2001.

[8] R. B. Dial. Algorithm 360: Shortest-path forest with topological ordering.Communi-
cations of the ACM, 12(11):632–633, 1969.

[9] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Ma-
thematik, 1:269–271, 1959.

[10] J. Fakcharoenphol and S. Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. In42nd IEEE Symposium on Foundations of Computer Science,
pages 232–241, 2001.

[11] I. C. M. Flinsenberg. Route planning algorithms for car navigation. PhD thesis,
Technische Universiteit Eindhoven, 2004.

[12] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and theiruses in improved network
optimization algorithms.Journal of the ACM, 34(3):596–615, July 1987.

[13] A. V. Goldberg and C. Harrelson. Computing the shortestpath:A∗ meets graph theory.
Technical Report MSR-TR-2004-24, Microsoft Research, 2004.

52

[14] A. V. Goldberg and C. Harrelson. Computing the shortestpath:A∗ meets graph theory.
In 16th ACM-SIAM Symposium on Discrete Algorithms, pages 156–165, 2005.

[15] R. Gutman. Reach-based routing: A new approach to shortest path algorithms opti-
mized for road networks. In6th Workshop on Algorithm Engineering and Experiments,
2004.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determina-
tion of minimum cost paths.IEEE Transactions on System Science and Cybernetics,
4(2):100–107, 1968.

[17] M. Holzer, F. Schulz, and T. Willhalm. Combining speed-up techniques for shortest-
path computations. In3rd International Workshop on Experimental and Efficient Al-
gorithms, volume 3059 ofLNCS, pages 269–284. Springer, 2004.

[18] P. Klein, S. Rao, M. Rauch, and S. Subramanian. Faster shortest-path algorithms for
planar graphs. In26th ACM Symposium on Theory of Computing, pages 27–37, 1994.

[19] E. Köhler, R. H. Möhring, and H. Schilling. Acceleration of shortest path and con-
strained shortest path computation. In4th International Workshop on Efficient and
Experimental Algorithms, 2005.

[20] U. Lauther. An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. InMünster GI-Days, 2004.

[21] U. Meyer. Single-source shortest-paths on arbitrary directed graphs in linear average-
case time. In12th Symposium on Discrete Algorithms, pages 797–806, 2001.

[22] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, andT. Willhalm. Partitioning
graphs to speed up Dijkstra’s algorithm. In4th International Workshop on Efficient
and Experimental Algorithms, 2005.

[23] I. Pohl. Bi-directional search.Machine Intelligence, 6:124–140, 1971.

[24] R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. http://www.r-project.org, 2004.

[25] P. Sanders and D. Schultes. Highway hierarchies hastenexact shortest path queries. In
13th European Symposium on Algorithms (ESA), 2005. To appear.

[26] F. Schulz.Timetable information and shortest paths. PhD thesis, Universität Karlsruhe
(TH), Fakultät für Informatik, 2005.

[27] F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s algorithm on-line: an empirical case
study from public railroad transport.ACM Journal of Experimental Algorithmics, 5:12,
2000.

[28] F. Schulz, D. Wagner, and C. D. Zaroliagis. Using multi-level graphs for timetable
information. In4th Workshop on Algorithm Engineering and Experiments, volume
2409 ofLNCS, pages 43–59. Springer, 2002.

53

http://www.r-project.org

[29] S. S. Skiena.The Algorithm Design Manual. Springer, 1998.

[30] M. Thorup. On RAM priority queues. In7th ACM-SIAM Symposium on Discrete
Algorithms, pages 59–67, 1996.

[31] M. Thorup. Undirected single source shortest paths in linear time. InFoundations of
Computer Science, 1997.

[32] M. Thorup. Undirected single source shortest paths in linear time.Journal of the ACM,
46(3):362–394, 1999.

[33] M. Thorup. On RAM priority queues.SIAM Journal on Computing, 30:86–109, 2000.

[34] M. Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. In42nd IEEE Symposium on Foundations of Computer Science, pages 242–
251, 2001.

[35] M. Thorup. Integer priority queues with decrease key inconstant time and the single
source shortest paths problem. In35th ACM Symposium on Theory of Computing,
pages 149–158, 2003.

[36] M. Thorup. Compact oracles for reachability and approximate distances in planar
digraphs.Journal of the ACM, 51(6):993–1024, 2004.

[37] M. Thorup. Integer priority queues with decrease key inconstant time and the single
source shortest paths problem.Journal of Computer and System Sciences, 69(3):330–
353, 2004.

[38] M. Thorup and U. Zwick. Approximate distance oracles. In 33th ACM Symposium on
the Theory of Computing, pages 183–192, 2001.

[39] M. Thorup and U. Zwick. Approximate distance oracles.Journal of the ACM, 51(1):1–
24, January 2005.

[40] U.S. Census Bureau, Washington, DC. UA Census 2000 TIGER/Line Files.
http://www.census.gov/geo/www/tiger/tigerua/ua tgr2k.html,
2002.

[41] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient
priority queue.Math. Syst. Theory, 10:99–127, 1977.

[42] D. Wagner and T. Willhalm. Geometric speed-up techniques for finding shortest paths
in large sparse graphs. In11th European Symposium on Algorithms, volume 2832 of
LNCS, pages 776–787. Springer, 2003.

[43] D. Wagner and T. Willhalm. Drawing graphs to speed up shortest-path computations.
In 7th Workshop on Algorithm Engineering and Experiments, 2005.

[44] T. Willhalm. Engineering Shortest Path and Layout Algorithms for Large Graphs. PhD
thesis, Universität Karlsruhe (TH), Fakultät für Informatik, 2005.

[45] J. W. J. Williams. Heapsort.Communications of the ACM, 7:347–348, June 1964.

54

http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html

Appendix A

Canonical Shortest Paths

A.1 Modifications of DIJKSTRA ’s Algorithm

We can modify DIJKSTRA’s algorithm so that only canonical shortest paths are found. In
order to do so, three conditions must be fulfilled:

1. An element in the priority queue is only updated if a shorter path to the corresponding
node is found, andnot if another path of the same length is found.

2. The adjacency list of a node is always processed in the sameorder.

3. The priority queue has theFIFO property, i.e., if there is more than one minimum
element, then the older element is removed first. The age of anelement refers to the
lastdecreaseKeyoperation or to theinsertoperation if nodecreaseKeyoperation has
taken place.

Theorem 9 On these conditions, we claim that ifDIJKSTRA finds the shortest path
P = 〈s, . . . , s′, . . . , t′, . . . , t〉 froms to t, then started froms′, it will find the corresponding
subpathP |s′→t of P as the shortest path tot. Obviously, this implies thatP |s′→t′ is found as
the shortest path froms′ to t′.

Proof: In order to obtain a contradiction, we assume that DIJKSTRA finds another shortest
pathQ 6= P |s′→t from s′ to t. We can write

P = 〈s, . . . , s′, . . . , s′′, uj, uj−1, . . . , u2, u1, t′, . . . , t〉 and
Q = 〈 s′, . . . , s′′, vk, vk−1, . . . , v2, v1, t′, . . . , t〉

such thatuj 6= vk andu1 6= v1.
When the search is started froms′, the nodev1 is settled beforeu1. (Otherwise,t′ would

be settled fromu1 because of Condition1 and the fact that the distance froms′ via v1 to t′

is equal to the distance froms′ via u1 to t′.) Hence,d(s′, v1) ≤ d(s′, u1). Furthermore, we
haved(s′, u1) ≤ d(s′, v1) because during the search started froms, u1 is settled beforev1.
Thus,d(s′, u1) = d(s′, v1).

Therefore, the search froms′ settlesv2 beforeu2. (Otherwise,u1 would be settled before
v1 because of Condition3.) We can conclude thatd(s′, u2) = d(s′, v2). We can use this

55

argument inductively to obtaind(s′, uℓ) = d(s′, vℓ), whereℓ = min{j, k}. Furthermore, we
can show thatvℓ is settled beforeuℓ. We now distinguish three cases.

The case thatj > k = ℓ cannot occur: When the search is started froms and whens′′ is
settled, thenuk has not been settled yet. (Otherwise, the shortest pathP from s to t would
be different.) Obviously, the nodeuk cannot be in the priority queue with a smaller tentative
distance thand(s, uk). Furthermore, it cannot be in the queue with the same distanced(s, uk)
because in this case the shortest path froms to uk would not pass bys′′ due to Condition
3. For similar reasons, there cannot be a direct link froms′′ to uk of the same distance
d(s′′, uk). Therefore, afters′′ has been settled,vk is in the priority queue with the tentative
distanced(s, vk) = d(s, uk), while uk is not yet in the queue with this tentative distance.
Hence, due to Condition3, vk would be settled beforeuk so that the shortest path froms to
t would be different fromP .

The case thatℓ = j < k cannot occur either. It is symmetric to the first case.
The case thatℓ = j = k remains. When the search is started froms′ and whens′′ is set-

tled, neitheruj norvk is in the priority queue with the tentative distanced(s′, uj) = d(s′, vk).
(Otherwise, the shortest path froms′ to t would not pass throughs′′ due to Condition3.)
Sincevk is settled beforeuj, we know that the edge(s′′, vk) appears in the adjacency list of
s′′ before(s′′, uj). Analogously, when the search is started froms and whens′′ is settled,
neitheruj nor vk is in the priority queue with the tentative distanced(s, uj) = d(s, vk).
According to Condition2, the adjacency list ofs′′ is always processed in the same order.
Therefore,vk is added to the queue beforeuj (or a decreaseKeyoperation onvk is per-
formed first). Hence,vk is settled beforeuj so that the resulting shortest path froms to t is
different fromP , which is a contradiction. �

A.2 FIFO Priority Queues

While Condition1 and2 are usually fulfilled automatically by any implementation of D IJK-
STRA’s algorithm, Condition3 is in generalnot guaranteed by a usual implementation of a
priority queue. However, for any given implementation of any priority queue, we can ensure
Condition3 by adding a counter that is initially set to 0 and that counts all insert andde-
creaseKeyoperations. When an element is inserted or adecreaseKeyoperation is performed
on an element, the current value of the counter is stored as a timestamp in addition to the
key of the element. When a comparison between two elements takes place and the keys are
equal, then the counts are compared, which leads to an unambiguous result.

The asymptotic complexity of the operations is not affected. However, the constants can
rise if it is not possible to store both the key and the count inone machine word.

56

	Introduction
	Preliminaries
	Shortest Paths and Dijkstra's Algorithm
	Highway Hierarchy

	Construction
	Fast Construction of the Highway Network
	Speeding up Construction
	Contraction of the Highway Network

	Query
	Multilevel Query Algorithm
	Collapse of the Vertical Dimension
	Abort-on-Success

	Implementation
	Data Structures
	Construction
	Query

	Experiments
	Environment and Instances
	Parameters
	Multilevel Queries

	Discussion
	Canonical Shortest Paths
	Modifications of Dijkstra's Algorithm
	FIFO Priority Queues

