Fast and Exact Shortest Path Queries
Using Highway Hierarchies

Dominik Schultes

July 2005

Master-Arbeit

Fachrichtung 6.2 — Informatik, Universitat des Saarlande
angefertigt nach einem Thema von Prof. Dr. Kurt MehlhornxNedanck-Institut fur Informatik
unter Betreuung von Prof. Dr. Peter Sanders, Universigtsfuhe (TH)

In Erinnerung an
meine Oma

Acknowledgements

| would like to thank my supervisor Peter Sanders for the monneinteresting discussions,
his encouragement and support. Domagoj Matijevic and JenseNroofread a preliminary
and the final version of my thesis, respectively. Their sstjgas were of great value. Frank
Schulz helped with the compilation of the section on relatedk. Martin Holzer, Domagoj
Matijevic, Frank Schulz, and Thomas Willhalm also assistgith data and tools for pro-
cessing graphs. Last but not least, | would like to thank Kdehlhorn for his willingness
to examine my thesis.

This thesis is based o029, a joint work with Peter Sanders.
For future developments referia t p: / / www. dom ni k- schul t es. de/ hwy/.

Hiermit versichere ich, dass ich diese Arbeit selbststanelrfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Saarbrucken, im Juli 2005

http://www.dominik-schultes.de/hwy/

Abstract

The computation of shortest paths in a graph is a well-knovablpm in graph theory.
One of the most obvious practical applications is route milagn in a road network, i.e.,
finding an optimal route from a start location to a target tmea We assume that a given
road network does not change very often and that there arg stamce-target queries on
the same network. Therefore, it pays to invest some time fpregrocessing step that
accelerates all further queries.

We present a new speedup technique for route planning tipddiexthe hierarchy in-
herent in real-world road networks. In a preprocessing, stepinvestigate the given road
network in order to extract and prepare a hierarchical sspr&@tion. Our route planning
algorithm then takes advantage of this data. It is an adaptaf the bidirectional version
of DIJKSTRA’s algorithm, massively restricting its search space.

In several experiments, we concentrate on the computatitastest routes in Western
Europe and the USA. Both networks consist of about 20 miliodes each. Our algorithm
preprocesses these networks in a few hours using lineae sfgweries then take around
eight milliseconds to produce optimal routes. This is mbesnt2 000 times faster than using
DI1JKSTRA's algorithm. There are numerous possibilities to furtmepiove and extend our
approach.

Zusammenfassung

Die Berechnung kurzester Pfade in einem Graphen ist eiartveéks Problem aus der Gra-
phentheorie. Eine der naheliegendsten praktischen Anuvegeth ist die Routenplanung in
einem Stral3ennetz, also die Bestimmung einer optimaleteRaun einem Start- zu einem
Zielort. Wir gehen davon aus, dass ein gegebenes StraResickenicht sehr oft andert und
dass viele Start-Ziel-Suchen im gleichen Stra3ennetzhdefdhrt werden. Dadurch lohnt
es sich, zunachst etwas Zeit in einen Vorverarbeitunggseh investieren, der dann alle
nachfolgenden Suchanfragen beschleunigt.

Fur das Problem der Routenplanung stellen wir eine neuehBasigungstechnik vor,
die die hierarchischen Eigenschaften von realen StraBphgn ausnutzt. In einem Vorver-
arbeitungsschritt untersuchen wir das gegebene Stratzeaneeine hierarchische Darstel-
lung zu gewinnen und aufzubereiten. Der Routenplanungstigius profitiert dann von
den gewonnenen Daten. Es handelt sich dabei um eine Angpdsubidirektionalen Vari-
ante des Algorithmus von IDKSTRA, die den Suchraum deutlich einschrankt.

In mehreren Experimenten beschaftigen wir uns mit der &ereng von schnellsten
Routen in Westeuropa und den USA. Beide Netze bestehen wagsea. 20 Millionen
Knoten. Die Vorverarbeitung dieser Stral3ennetze daueariggestunden, wobei nur ein lin-
earer zusatzlicher Platzbedarf anfallt. Suchanfragereth dann ungefahr acht Millisekun-
den, um optimale Routen zu bestimmen. Dies ist mehr als 2 G0Gchneller als die Ver-
wendung von IKSTRAS Algorithmus. Es gibt zahlreiche Moglichkeiten, diesensatz
weiter zu verbessern und auszubauen.

Contents

1 Introduction

2 Preliminaries
2.1 Shortest Paths andI&RSTRA'S Algorithm
2.2 Highway Hierarchy

3 Construction
3.1 Fast Construction of the Highway Network e e
3.2 Speedingup Construction. o
3.3 Contraction of the Highway Network

4 Query
4.1 Multilevel Query Algorithm o oL
4.2 Collapse of the Vertical Dimension

4.3 ADOrt-on-SUCCESS o

5 Implementation
5.1 DataStructures e e e
5.2 Construction
9.3 QUENY . . . e

6 Experiments
6.1 EnvironmentandlInstances
6.2 Parameters. e e
6.3 Multilevel Queries e

7 Discussion

A Canonical Shortest Paths
A.1 Modifications of DIKSTRAS Algorithm
A.2 FIFOPriority QUEUES o

14
14
20
21

24
24
29
30

33
33
37
39

40
40
42
45

50

Chapter 1

Introduction

Motivation

Finding an optimal route from A to B is an everyday problemnc®i using a map to aid
the route planning is rather inconvenient and does not sacg$ead to an optimal route,
during the last years, many applications and tools wereldpegd that try to determine good
routes in order to achieve a reduction of travel distanoge tand costs. Two representative
examples are route planning services provided in the iateand car navigation systems.
There is a great interest gfficientroute planning methods: in the former case, due to the
huge amount of requests that are sent to the server, and liatttiecase, due to the limited
computing power of car navigation systems. Furthermonepkbwious reasons, there is a
great interest in methods that do not only find approximatitmtexactsolutions.

A road network can easily be represented agaph i.e., as a collection of nodéds
(junctions) and edgek (roads) where each edge connects two nodes. Each edgeyiseatsi
a weight, e.g. the length of the road or an estimation of time theeded to travel along the
road. In graph theory, the computationsifortest pathsbetween two nodes is a classical
problem. From a worst case perspective, the problem haalyangen solved by DKSTRA
in 1959 P] who gave an algorithm that finds all shortest paths from distanodes using
at mostm + n priority queue operations for a graph= (V, E') with n nodes andn edges.
However, these bounds are not satisfying in practice whemlea with very large road
networks. There are several aspects that suggest that v deetter:

1. In a sense, DKSTRA's algorithm is an overkill since it computes the shorteshpa
from a given node to all nodesv € V and not only toonegiven nodet. This can
be improved by stopping DKSTRA's algorithm as soon as the shortest patlt te
found, but still the shortest paths frosto all nodesv that are closer te thant are
determined (Figl.1).

2. We assume that a given road network does not change veny afid that there are
many source-target queries on the same network. Theréfces pay to invest some
time for apreprocessingtep that accelerates all further queries.

3. We do not deal with general graphs, but with road netwavksch have certain prop-
erties. For instance, it is quite unusual for a node in a ragdork to have degree

Note that, depending on the chosen edge weight, ‘shortastrefer not only to ‘spatial distance’, but
also, for instance, to ‘travel time’.

Figure 1.1:Schematic representation of the search spacedf€rrA’s algorithm.

five or more, i.e., a road network is a vesgarsegraph. Furthermore, road networks
are almosplanar (because there are only a few bridges and tunnels in cornoparis
to the total number of road segments). Usualligyautis given that is based on the
geographic coordinates of each node. Moreover, road nksnethibithierarchical
properties for example, there are ‘more important’ streets (e.g. mveags) and ‘less
important’ ones (e.g. urban streets).

Specification of the Goals

On a givenlarge road network, we allow &ast preprocessingtep in order to makéast
source-target queriepossible. The queries retuaxactsolutions. Low space consump-
tion is a constraint. Furthermore, the method shouldtee-invariant i.e., it should be
optimised not only for long paths. In other words, the rugniime of the computation of
a shortest path (e.g. from Karlsruhe to Saarbriicken) inge lgraph (e.g. Western Europe)
should be not much higher than the running time of the samgpatation in a smaller graph
(e.g. Germany).

Related Work

There is so much literature on shortest paths and prepiliagabat we can only highlight se-
lected results that help to put our work into perspective.récent, more detailed overviews
we refer to L4, 44, 11]. In the following, speedupefers to a comparison of average query
times to those of the unidirectional variant ofJRSTRA’'S algorithm that stops when the
target is found. These speedup factors provide an indicatiche performance of each
approach. However, it is important to note that the speedtgBkely to depend on the size
and structure of the graph that is used for the experimeihstefore, since each author uses
different graphs, these numbers have to be interpretedoaiition.

Without Preprocessing. The main focus otheoretical work on shortest paths has been
how to reduce or avoid the overhead of priority queue opamati The original version of
DI1JKSTRA's algorithm P] runs in O(n?). This bound has been improved several times,
e.g., toO(mlogn) using binary heapsapl, O(m + nlogn) using Fibonacci heap42],
O(mloglogn) [30, 33], andO(m + n loglogn) using a sophisticated integer priority queue
[35, 37] that supportsleleteMinoperations inD(log log n) and all other operations in con-
stant time. For integer edge weights in a range fromQ t®IAL proposed ad (m + nC)

2

algorithm using buckets$]. This bound has been improved@gm loglog C') [41], O(m +
ny/log C) [1], andO(m+nloglog C') [35, 37]. Linear time algorithms for the single source
shortest path problem have been presentegltmar [18] and undirectedgraphs 81, 32].
MEYER [2]] gives an algorithm that works in linear time with high prblday on an arbi-
trary directed graph with random edge weights uniformlytribsited in the intervalo, 1].
However, so far, no linear time algorithm (with respect teworst case) for directed graphs
is known.

Experimental studies] indicate that inpractice even very simple priority queues like
binary heaps only induce a factor 2—3 overhead comparedldytiuned ones. In particular,
it does not pay to acceleratiecreaseKepperations since they occur comparatively rarely
in the case of sparse road networks.

Bidirectional searchs a classical technique that has the potential to give adsjpeef
up to a factor of two. It simultaneously searches forwardifroand backwards fromuntil
the search frontiers meet (Fig.2).

Figure 1.2:Schematic representation of the search space of the hidinatversion of
DIJKSTRA's algorithm.

A* search[16], a heuristic search technique from the field of Artificiatdiigence,
is a goal-directedapproach, i.e., it adds a sense of direction to the searategso For
each vertex, a lower bound/ (v, t) on the distance t¢ is required. In each step of the
search process, the nodes selected that minimise&s, v) + d'(v,t). This approach can
be combined with bidirectional searc®3. The performance of the* search depends on
a good choice of the lower bounds. If the geographic cootdsaf the nodes are given, the
Euclidean distance fromto ¢ can be used as lower bound. This leads to a simple, fast, and
space efficient method, which, however, gives only a smakdpp, in particular when the
edge weights are not Euclidean distances, but, for instarase! times.

With Preprocessing. An extreme case would be to precompute all shortest pathiss Th
allows constant time queries, but is prohibitive for largaphs due to space and time con-
straints. In general, there is a trade-off between the tieedad forprecomputationthe
spaceneeded for storing the precomputed information, and thdtreg query time

Perhaps the most interestitigeoretical results on route planning are algorithms for
planar graphs that might be adaptable to route networks since #resalmost planar. Us-
ing O(nlog® n) preprocessing time, query tint&(/n log® n) can be achievedLp] for di-
rected planar graphs without negative cycles. In a plargplgwith integer edge weights
in a range from O ta”, queries accurate within a fact¢t +) can be answered in time
O(loglog(nC') +1/¢) usingO(n(logn)(log(nC))/e) space and (n(log n)?(log(nC'))/?)
preprocessing timesf, 36).

For undirectedgraphs that are not necessarily planatORUP and ZAvICK presented a
distance oracle3g, 39 that answers queries in constant time ugingn./n) expected time
for preprocessing an@(n/n) space; the@pproximatedistance returned is accurate within

3

a factor of three. Furthermore, they show that any approtérdestance oracle fatirected
graphs must use at led3tn?) bits of storage on at least onevertex graph. Ipractice, the
graphs used for the USA or Western Europe already have ar@imaillion nodes so that
significantly superlinear preprocessing time or even fliyguperlinear space is prohibitive.
Hence, the above approaches seem not directly applicatiie fwroblem at hand.

In [13, 14], an algorithm is presented that is based Ainsearch landmarks and the
triangle inequality. After selecting a small number of laratks, for all nodes, the distances
to and from each landmark are precomputed. For two node®d¢, the triangle inequal-
ity yields for each landmark a lower bound?' (v, t) := d(¢,t) — d(¢,v) < d(v,t). The
maximum of these lower bounds is used during&rsearch. For global queries, about 16
global shortest path computations during preprocessifigsuo achieve a speedup factor
of around 16 in a road network consisting of about 6.7 millmues. However, the land-
mark method needs a lot of space — one distance value for emighlandmark pair. It is
also likely that for real applications each node will needtare distances to different sets
of landmarks for global and local queries. Hence, landmbekg very fast preprocessing
and reasonable speedups but consume too much space foargaynetworks.

Reach based routingl5] excludes nodes from consideration if they do not contgbut
to any path long enough to be of use for the current query. &eseup to ten (17 when
combined withA*) are reported for graphs with about 400 000 nodes using rharetivo
hours preprocessing time. Our method is an order of magaiaster in terms of both query
and preprocessing time.

High speedups are reported fgeometric container§27, 42, 44]. For each edge,
the setS(e) is determined that contains all nodes that can be reachedsbieréest path
starting withe. Then, a simple geometric contairn€fe) (e.g. a rectangular bounding box)
is computed that contains at least all elementS(ef. During the execution of DKSTRA'S
algorithm, an edge can be ignored if the target node lies outside). The preprocessing
step of this approach requires a very expensive all-paogest paths computation.

A related method, which achieves speedups of up to a factbd0D in a road network
with about one million nodeslp], is based oredge flagg20, 19, 22]. The graph is parti-
tioned intok regions. For each edgeand each region, one flag is computed that indicates
whethere lies on a shortest path to a node in regionn order to determine the edge flags,
for each edge that leaves a region, one shortest paths catigpus performed. After these
preprocessing steps have been completetk €rRA’'s algorithm can take advantage of the
edge flags: edges have to be relaxed only if the flag of the mabiat the target node be-
longs to is set. Note that the preprocessing costs of thiaph are better than those of the
geometric containers. Still, the edge flag method is probtdd slow when it has to deal
with very large road networks consisting of several milarf nodes since the preprocess-
ing of less than half a million nodes already takes more thanhours [L9]. An extension
to multiple levels, which reduces the space consumptisuyggested in2).

The previous approach closest to ours isgbparator based multilevel meth{2i7, 28,
26]. The idea is to partition the graph into small subgraphsdmaving a (hopefully small)
set of separator nodes. These separator nodes togethedggh representing precomputed
paths between them constitute the next level of the graplkri€athen only need to search
in the partitions ofs andt and in the higher level graph. This process can be iterated.
Speedups around ten are reported for railway transpantgtioblems 28] and for road
networks B4] that contain mostly nodes with degree two. Disadvantagespared to our

4

method are that performance depends on very small (and #rdstd find) separators and
that the higher level graphs get quite dense so that goingatoyrtevels quickly reaches a
point of diminishing return. In contrast, our method, whistbased on a different notion
of multilevel graphs, has a very simple definition of what titates the higher level graphs
and our higher level graphs remain sparse.

Many of the above techniques can be combined. 2Ifj, [a combinationof a special
kind of geometric container, the separator based mullilmethod, andA* search yields
a speedup of 62 for a railway transportation problem.1Ij,[combinations ofA* search,
bidirectional search, the multilevel method, and georo&tintainers are studied: Depend-
ing on the graph type, different combinations turn out to bstb For real-world graphs,
a combination of bidirectional search and geometric coetai leads to the best running
times.

In contrast to our method, some approaches (e.g. geometriainers) require for each
node its geographic coordinates, which might not alwaysvadable. However, there are
studies that indicate that it is possiblegenerate a layoubf a graph so that speedup tech-
niques can be applied successfully. In some cases (wheraganab layout is available),
generated layouts even result in a slightly higher spedtupthe original layout does4,[5]
deals with the special case of a timetable information systemore general approach is
presented in43].

Our Approach
Let us consider the following naive route planning method:
1. Look for the next reasonable motorway.
2. Drive on motorways to a location close to the target.
3. Leave the motorway and search the target starting frormtiterway exit.

Of course, it is true that this fast method does not alwayklytlee optimal solution, but,
in many cases, we obtain a reasonable approximation (pduitat source and target are
not too close together and that we travel in a country whoseomay network is well
developed). This naive route planning method is based amplsirule of thumb: when we
are on our way to a remote target and pass by a city on a motpitvwespially does not pay
to leave the motorway and look for a faster way through the titother words, usually, we
can safely ignore all ‘less important’ city streets andkstacthe ‘more important’ motorway
since weknowthat the motorway provides the fastest way. The approadhshesed by
some commercial route planning systems is based on the alesve

1. Search from the source and target nod&(fectional) within a certain radius (e.qg.
20 km), consideall roads.

2. Continue the search within a larger radius (e.g. 100 kaorjsicler onlynational roads
and motorways

3. Continue the search, consider onigtorways

Note that the actual implementations of this approach arme saphisticated than our simpli-
fied presentation suggests. Again, we get a method whiclstistfat still returns inaccurate

5

results — albeit better ones than those of the naive routenpig method. We cannot guar-
antee exact results because we cannot exclude that soredtiactually might be better to
leave a ‘more important’ road (e.g. a motorway) and use sdess important’ street (e.g. a
local road) that provides some kind of shortcut. In otherdsogr street that we considered
to be ‘less important’ might turn out to be ‘more importartanh its category suggests. This
observation is the starting point of our approach.

Similar to the commercial approach, we first perform some kihlocal searchfrom s
and fromt and then switch to searching irhgghway networkhat is much thinner than the
complete graph (FidL.3). Our main contribution is the fact that we define the notiblooal

Figure 1.3:Schematic representation of the local seaddrK colour9 and the search in
the highway networklight colour9.

searchand highway networkappropriately so thagxactshortest paths can be computed.
This is very simple. We define local search to be a search thiis ¥the H closest nodes
from s (or t) where H is a tuning parameter. This definition already fixes the highw
network. An edgéu, v) € E should be a highway edge if there are nodesid¢ such that
(u, v) is on the shortest path frogto ¢, v is not within theH closest nodes from, andu is
not within theH closest nodes from

At first glance it might appear that a (prohibitively expem3iall-pairs shortest path
computation is needed to find the highway network. Howeverwit show that each high-
way edge is also within some local shortest path ffe®oted at some € V' such that all
leaves ofB are ‘sufficiently far away’ froms.

So far, the highway network still contains all the nodes efdhginal network. However,
we can prune it significantly: Isolated nodes are not neetiegs attached to a biconnected
component can only be traversed at the beginning and end atha Similarly, paths con-
sisting of nodes with degree two can be replaced by a singje.€the result is aontracted
highway networkhat only contains nodes of degree at least three.

We expect that search in the two-level network defined abaveatready be used to
achieve speed comparable to some currently used commsysigms without sacrificing
exactness. However, we can continue, define local searcheohighway network, find a
‘superhighway network’, contract it, and so on. We arriva atultilevel highway network
—highway hierarchyNow, the query algorithm works in the following way: firsenborm a
local search in the original graph (level 0); second, switcthe highway network (level 1)
and perform a local search in the highway network; then,cwit the next level of the
highway hierarchy, and so on. Figuie4 gives a schematic representation of the search
space, Figl.5a real-world example.

Outline

Chapter2 gives a more formal definition of theasic conceptsised in this paper. In Chap-
ter 3, we deal with the efficientonstructionof the highway hierarchies. First, we give an
algorithm that computes the exact highway network of a giyeph. Then, we introduce

6

Figure 1.4:Schematic representation of the search in levelabKcolourg, level 1 (ight
colour9, and level 2 () of a highway hierarchy.

Figure 1.5:Search space for a query from Limburg (a German city) to ailmed 00 km
east of the source node. Source and target are marked bye @ihe thicker the line, the
higher the search level. Note that edges representing ldngpshs are not drawn as direct
shortcuts, but by showing the actual geographic route taken

a tuning parameter that allows to speed up the constructitregrice of no longer com-
puting the actual highway network, but a superset of it. inave show how the highway
network can be contracted. Note that the construction glgoronly works if the shortest
path search performed during precomputation computesisbajbitrary shortest paths, but
canonical shortest paths.e., the algorithm has to break ties in such a way that ghispa
of shortest paths that are determined by the search are etisordned. In AppendiA we
show that any priority queue data structure can be modifigdiémantee canonical shortest
paths. Chapte# develops aqueryalgorithm that uses highway hierarchies. After several
correctness preserving transformations, we get a bidireatt DIJKSTRA-like search in a
single graph that contains all levels. The only modificatiaffect the selection of edges to
be relaxed and how to finish the search when the search freffitien s andt meet.

Chapter5 highlights some interesting aspects ofiaplementatiorof our approach. In
Chapter6, we summarisexperimentsising detailed road networks for Western Europe and
the USA. Using a uniform neighbourhood sizeof 125 and 225, respectively, the graphs
shrink geometrically from level to level. This leads to agmaeessing time of around four
hours and average query times below 8 ms. PosSitblege improvementare discussed in
Chapter?.

Chapter 2

Preliminaries

2.1 Shortest Paths and IKSTRA's Algorithm

Graphs and Paths. We expect arundirectedgraphG = (V, E) with n nodes andn
edgese with nonnegativeweightsw(e) as input: We assume w.l.0.g. that there are no
self-loops, parallel edges, and zero weight edges in thet inghey could be dealt with
easily in a preprocessing step. Tleagthw(P) of a pathP is the sum of the weights of
the edges that belong 8. P* = (s,...,t) is ashortest pathf there is no pathP’ from
s to t such thatw(P’') < w(P*). Thedistanced(s,t) betweens andt is the length of a
shortest path from tot. If P = (s,..., s, uy,us,...,ux, t',... t) is a path froms to ¢,
thenP|y_y = (s',uy, us, . .., ug, t'y denotes theubpathof P from s’ to¢’. An example for
these concepts is given in Fig.L
P*
anode 6

an edge with weight 6

Figure 2.1:An undirected graph witm = 10 nodes andn = 10 edges. Two path&
and P* from nodes to nodet are marked. The length(P) of P is 22;w(P*) = 15. P*
is a shortest path. The distance frerto t is d(s,t) = w(P*) = 15. A subpathP|,_,, of
P from s’ to ¢ is highlighted.

DIJKSTRA’s Algorithm. DIJKSTRA’s algorithm B] can be used to solve tisngle source
shortest path (SSSP) problene., to compute the shortest paths from a single source niod
to all other nodes in a given graph. Itis covered by virtualy textbook on algorithms, e.g.

lUnless otherwise stated, we always deal witidirectededges. The restriction to undirected graphs
simplifies the presentation of our approach and the impléatien. However, our method can be generalised
to directedgraphs. In further footnotes we will outline what has to baelo

8

[7, 29]. For the sake of self-containment, we give an outline idi@ing the terminology
used throughout this thesis.

Starting with the source nodeas root, DIKSTRA’s algorithm grows ahortest path tree
that contains shortest paths franto all other nodes. During this process, each node of the
graph is eitheunreachedreached or settled

e A node that already belongs to the treseédtled If a nodeu is settled, a shortest path
P* from s to u has been found and the distant{e, «) = w(P*) is known.

e A node that is adjacent to a settled nodeeached Note that a settled node is also
reached. If a node is reached, a patk from s to «, which might not be the shortest
one, has been found andemtative distance (P) is known.

e Nodes that are not reached amreached

The nodes that are reached but not settled are managaqutioridy queue which supports
the operations

e insert— insert an element into the priority queue,

e deleteMin- retrieve the element with the smallest key and remove i fitoe priority
queue,

o decreaseKey set the key of an element that already belongs to the prigugue to
a new value that is less than the old value.

Thekeyof a node in the priority queue is its tentative distance.

Initially, s is inserted into the priority queue with the tentative dis&® 0. Thuss is
reached, all other nodes are unreached. While the priou&ue is not empty, the node
with the smallest tentative distance is removedi¢teMir) and added to the shortest path
tree, i.e.;u becomes settled. Furthermotés outgoing edges anelaxed

¢ if an edge(u, v) leads to an unreached node is added to the priority queuaéerd);
now,v is reached,;

e if an edge(u, v) leads to a reached but not settled node's key in the priority queue
is updated decreaseKeyprovided that the length of the path fronvia u to v is less
thanv’s old key;

e if an edge(u, v) leads to a settled nodeg it is ignored.

Canonical Shortest Paths. A selection of shortest patl&P contains for each connected
pair(s,t) € V x V exactly one shortest path frogrto ¢. Such a selection is callenonical

if P =(s,...,s,....,t,....t) € SP implies thatP|,_, € SP. The elements of a
canonical selection are callednonical shortest pathdf D1JKSTRA'S algorithm is started
from each node € V, for each connected pdis, t) exactly one shortest path is determined.
In AppendixA some modifications of DKSTRA's algorithm are described which ensure
that the obtained selection of shortest paths is canorfiogiire 3.4 in Section3.1 explains
the importance of this concept.

2.2 Highway Hierarchy

Locality. Let us fix any rule that decides which elementiKsTRA'S algorithm removes
from the priority queue in the case that there is more thancquesied element with the
smallest key. Then, during alIXSTRA search from a given nodg all nodes are settled in
a fixed order. Théijkstra rankr,(v) of a nodev is the rank ofv w.r.t. this order.s has
DIIKSTRA rankr(s) = 0, the closest neighbouy of s has DIJKSTRA rankrs(v,) = 1, and
so on. For a given nodg the distance of thé&/-closest node fromis denoted byl (s), i.e.,
dg(s) = d(s,v), wherer,(v) = H. The H-neighbourhoodV(s) (or justneighbourhood
N(s))of sisN(s) :={v eV |d(s,v) < dg(s)}. ?Figure2.2gives an example.

Figure 2.2:A graph with a given source node The D1JkSTRA rankof all nodes and the
5-neighbourhoof s are depicted. The weight of an edge is the length of the ligesat
that represents the edge in this figure.

Highway Hierarchy. For a given parameteH, the highway networkG, = (Vi, Ey)

of a graphdG is defined by the sek; of edges: an edgéu,v) € E belongs toF; iff
there are nodes,t € V such that the edgé:, v) appears in the canonical shortest path
(s,...,u,v,...,t) fromstot with the property that ¢ Ny (s) andu & Ny (t). The setl;

is the maximal subset df such thatz; contains no isolated nodes. Figwtsillustrates
this definition, Fig2.4and2.5show examples of highway networks.

Nx(t)

Highway

/\/H(s)\
O an sven
o B

Figure 2.3: A canonical shortest path from a nodéo a nodet. Edges that leave the
neighbourhood of or ¢ and edges that are completely outside the neighbourhoods of
andt arehighway edges

2For directed graphs we also need an analogous v@jre) that refers to the reverse gragh :=
(ViA(v,u) | (u,v) € E}). N(-) is defined correspondingly. From now on, whenever the targdet or
the backward search frofris concerned, we have to keep in mind thatd (-), andN(-) apply.

10

Figure 2.4:A simple example of a highway network. Theghway edgeare highlighted.
The weight of an edge is the length of the line segment thatsepnts the edge in this
figure. The neighbourhood siZé is 3.

Figure 2.5:The highway network of Europe, clipped by a bounding box adoKarl-
sruhe. Théhighway edgesre highlighted.

11

The2-coreof a graph is the maximal vertex induced subgraph with mimmaegree two.
A graph consists of its 2-core aattached trees.e., trees whose roots belong to the 2-core,
but all other nodes do not belong to it (FB)6). A linein a graph is a patlug, u,, . . ., ug)

Figure 2.6:The2-coreof the highway network from Fig2.4 and anattached treevhose
root r belongs to the 2-core. Note thatdoes not belong to the 2-core although it has
degree 3 in the highway network.

consisting of more than two nodes where the inner nades. ., u;_; have degree two
(Fig. 2.7). From the highway network’, of a graphG, thecontracted highway networdk’

of the graphG is obtained by taking the 2-core 6f; and then removing the inner nodes
of all lines (ug, u1, ..., ux) and replacing each line by an edge), ux) (Fig. 2.8). Thus,
the highway networky; consists of the contracted highway network (also catied) G/
and someomponentswhere ‘component’ is used as a generic term for ‘attachess and
‘line’. In this thesis, ‘components’ is always used in thiesific sense, but never to denote
‘connected components’ in general. Sometimes it is comvernto use the term ‘endpoint(s)
of a component’ to denote either the endpoints of a line ordbeof a tree.

The highway hierarchyis obtained by applying the process that leads fréno G
iteratively. The original grapltr, := G|, := G constitutes level O of the highway hierarchy,
G, corresponds to level 1, the highway netwark of the graph’7, is called level 2, and so
on.

12

Figure 2.7:The 2-coreof the highway network from Fig2.4 containing five linesEnd-
pointsandinner nodeof lines are marked. Both endpoints of a line are connected by
shortcut

Figure 2.8:Thecontracted highway networbbtained from the highway network from Fig.4.

13

Chapter 3

Construction

3.1 Fast Construction of the Highway Network

We start with an empty set of highway edgEs. For each node,, two phases are per-
formed: the forward construction of a partial shortest fgegb B and the backward evalua-
tion of B. The construction is done by an SSSP search fsgrduring the evaluation phase,
paths from the leaves d? to the roots, are traversed and for each edge on these paths, it
is decided whether to add it tB; or not. The crucial part is the specification of an abort
criterion for the SSSP search in order to restrict it to adl@earch’.

Phase 1: Construction of a Partial Shortest Path Tree. A DIJKSTRA search froms

is executed. During the search, a reached node is eitheeist#éiteactive or passive The
source nods is active; each node that is reached for the first timegf and each reached
node that is updatediécreaseKeyadopts the activation state from its (tentative) parent in
the shortest path treB. When a node is settled and thabort criterion (see below) is
fulfilled, p’s state is set to passive. When no active unsettled noddtjsthe search is
abortedand the growth of3 stops.

Abort Criterion. When a node is settled using the patR’ as depicted in Fig3.1, then
p's state is set to passive|if/(s;) NN (p)| < 1.

Figure 3.1:Abort criterion.

An example for Phase 1 of the construction is given in Big. Note that the simpler
abort criterion\(sg) N N(p) = () does not work — Fig3.3 gives a counter-example. The
intuitive reason fors; (which is the first successor @f, on the pathP’) to appear in the
abort criterion is the following: When we deactivate a ngdéuring the search from,,

14

Figure 3.2: An example of Phase 1 of the construction. The weight of are ésighe
length of the line segment that represents the edge in thisefigrhe neighbourhood size

H is 3. An SSSP search is performed frag The abort criterion applies three times:
the involved nodes; andp and the corresponding neighbourhoods are markexyanm,
magenta and brown, respectively. In thérown casethe intersection of the concerned
neighbourhoods contains exactly one element; in the ottecases, the intersections are
empty. All edges that belong t@'s partial shortest path tree are coloured: edges that leave
active nodes arblue edges that leave passive nodesgeen

Figure 3.3: Counter-example for the wrong abort criteridfisg) N NM(p) = 0. If the
wrong abort criterion was applied, the search fregrand from¢ would be aborted gt
andv, respectively. Hence, the edde v) would not be added to the highway network.
However, for the shortest path search fregrto ¢, this edge would have to belong to the
highway network.

15

we decide to ignore everything that lies behmdwe are free to do this because the abort
criterion ensures that, can take ‘responsibility’ for the things that lie behipd.e., further
important edges will be added during the search frgm(Of course,s; will refer a part of

its ‘responsibility’ to its successor.) In this contextgF3.4 illustrates why the concept of
canonical shortest pathsas been introduced in Sectiari.

(c) Result of the construction.

Figure 3.4:An example of the construction withoo&nonical shortest pathg he neigh-
bourhood sizeH is 3. In (a) and (b), the edges are coloured that belong to ainigap
shortest path tree rooted &f and s;, respectively; edges that are added to the highway
network are red. We assume that the search fsgrfa) and from¢; ‘prefers’ the upper
branch {: andv), while the search from; (b) and fromt, ‘prefers’ the lower branchu{
andv’). The result is a ‘broken’ highway network (c). In contrdbg concept of canonical
shortest paths guarantees thaands; ‘prefer’ the same branch so that ‘can finish what

so Started’.

Phase 2: Selection of the Highway Edges.During Phase 2, exactly all edgés, v) are
added taF; that lie on pathsso, ..., u, v, ...,) in the partial shortest path trégwith the
property that & N(sq) andu & N(ty), wheret, is a leaf of B. The example from Fig3.2
is continued in Fig3.5.

Lemma 1 Consider a shortest pathu, . .., ¢,...,t'), wheret’ € N(u). Thent € N(u).

Proof: Follows directly from the definition of the neighbourhooda@d(u, t) < d(u,t’). O

16

Figure 3.5:An example of Phase 2 of the constructiap’s partial shortest path tree has
five leavesty, which are marked in different colours. Thegesthat are added td; are
highlighted.

Lemma 2 Consider a shortest pathu, . .., t,...,t'), whereu € N(¢'). Then,u € N(t).

Proof: SinceVv € N(t) : d(v,t') < d(v,t) + d(t,t') < dy(t) + d(t,t'), we have, in
particular,
max d(v,t') < dg(t) + d(t,t). (3.1)
veN(t)
Furthermore|N(t)| > H + 1 implies thatmax,cn 7o (v) > H (because the DKSTRA
ranks are unique and the smallestiisTRA rank is 0). Thus,

Jnax d(v,t') > dg (). (3.2)
(3.1) and 3.2 lead to
du(t) < du(t) + d(t, ¥). (3.3)
The condition that. € AV(¢') implies
d(u,t') < dg(t). (3.4)

(3.3 and 3.4 lead to
d(u,t") <dg(t)+d(t,t') <= d(u,t') — d(t,t') < dy(t) <= d(u,t) < dy(t). (3.5)
Thus,u € N(t). O

Lemma 3 Consider a shortest pati wheret is not a predecessémnf s and v is not a
predecessor of. Furthermoreu € N(t) andv € N(s) — a “cross-over situation”. Then,
u € N(s)andv € N(t).

INote that ‘a predecessor’ doest necessarily mean ‘the first/direct predecessor’.

17

Proof: We prove the statemente N(s); the proof ofv € N(¢) is symmetric. We distin-
guish between three cases.

1. uw = s. Trivial.

2. uis a predecessor 6f i.e., P = (... ,u,...,s,...,t,...). u € N(s) follows from
Lemmaz2 sinceu € N(t).

3. uis a successor of, i.e., P = (...,s,...,u,...,v,...). u € N(s) follows from
Lemmal sincev € N(s). O

Theorem 1 An edge(u, v) € E is added toE; by the construction algorithm iff it belongs
to some canonical shortest path= (s, ..., u,v,...,t) andv € N(s) andu & N(¥).

Proof: <) Consider the node, on P|, ., = (s,..., so, s1,...,u,v) such thaty & N(sg)
and d(so,v) is minimal. Note thaty € AN(s;) [*]. Such a nodes, exists because the
conditionv & N(sy) is always fulfilled fors, = s. We show that the edge, v) is added
to £, when Phase 1 and 2 are executed frgm It is important to note thaP|,, ., is a
canonical shortest path and, thus, if a netlen P|,,_, is settled during Phase 1, then its
parent inB is its predecessor oR|,, ;. In other words, the shortest path framto +’ that

is traversed during Phase 1 is not an arbitrary shortest pattihe canonical shortest path
P|s,— . After Phase 1 has been completed, we distinguish betwezndses.

Caset € B. We know thatu ¢ N(t). Lett, be any leaf ofB that is either a descendant
of t or ¢ itself. By Lemma2, we obtainu & N{t).

Caset ¢ B. The search is not continued from some nagle: ¢ on P|,,_;. In general,
the search of Phase 1 is not continued from a ngdeand only if there is no canonical
shortest path from, via ¢, to another node, or the abort condition is fulfilled, i.egrthis
no active unsettled node left. In this case, the first cooditannot apply since for each
nodet; # t on P|,,_., there is a canonical shortest path fremvia ¢, to another node,
namely tot. Hence, the second condition must be fulfilled. We can caleclinatt, is
passive because, otherwise, its successoPpn., would adopt its active state and the
search would not be aborted at that time. Sisces active and, is passive, eithefy or one
of its ancestors must have been switched from active toy@mdsetp denote the first passive
node onP|s, s = (So,S1,---,DP,---,t0,--.,t). Due to the definition of the abort condition,
we havelN(s1) N N(p)| < 1[**]. In order to obtain a contradiction, we assume= N/ (p).
Furthermore, we have € N(s;) [see *]. Lemma3yieldsu € N(s;) andv € AV(p). Hence,
{u,v} C N(s1) N N(p). Therefore N (s1) N N(p)| > 2, which is a contradiction to [**].
We can conclude that ¢ N(p). Furthermore, we know that(and, consequently,) is not
a successor gf: If v was a successor pf Lemmal would yieldv ¢ N(p) sinceu & N(p);
this would be a contradiction to Lemniasincev € N(s;) [see *]. From the facts that
u & N(p), u is not a successor gf andp is not a successor af, we can conclude that
u & N(tp) due to Lemma.

So, in both cases, we have¢ N(t,) andt, is a leaf of B. Furthermorey is not a
predecessor of, (due to the choice of,) andwv is not a successor @f. From these facts
and the specification of Phase 2, we can infer that the édge is added ta~; .

=) Each path inB from s, to a leaft, is a canonical shortest path due to the modi-
fications of DJKSTRA’'S algorithm as described in Appendix Hence, the claim follows
directly from the specification of Phase 2. O

18

Details on Phase 2. For a nodeu € B, definel, as the set of leavels of B that are
the endpoints of paths of the forfay, ..., u,...,%). TheslackA(u) of a nodeu € B is
defined in the following wayA (u) := ming ey, (dgy(to) — d(u, to)). For a leafty, we have
L, = {to} andA(ty) = dg(to). The slack of an inner nodecan be computed using only
the slacks of its childrefy,: A(u) = min.co, Ac(u), whereA.(u) := A(c) —d(u, c). This
leads to an equivalent, recursive definition. R

The slacksA(ty) of all leavest, of B are set taiy(ty). The tentative slacka (u) of
all other nodes: of B are set to+oco. A FIFO queue? is filled with all leaves ofB (in
an arbitrary order). All elements @} are processed one after the other u@tils empty.
We maintain the invariant that the tentative slatku) of an element: that is removed
from @ is equal to the actual slack(u). When a node: is removed from), we compute
Ay (p) = A(u) — d(p,u), wherep is the parent ofi in B. If A,(p) < 0, the edg€p, u) is
added toE;. If A(p) = 400 and the node does not belong td/(sy), thenp is added tay.
If Au(p) < ﬁ(p), the tentative slac@(p) is set toA, (p). Figure3.6 gives an example.

Figure 3.6:An example of theslack-based methatthat realises Phase 2 of the construc-
tion. The process is shown only for a part of the tree. As leefdre weight of an edge is
the length of the line that represents the edge in this figioe.the sake of transparency,
the (rounded) weights are given explicitly for the relevadges. Furthermore, the slacks
of the involved nodes are given. Edges that added toF; are red, edges that anet
addedblue.

Theorem 2 An edggu, v) is added toF; by theslack-based methddtroduced above iff it
lies on a path(sg, ..., u,v, ..., t) in the partial shortest path tre® with the property that
v & N(so) andu & N(ty), wheret, is a leaf of B.

Proof: <) From the definition of the slack of a node, it follows that
Av(u) = A(U) - d(uav) < dH(tO) - d(vatO) - d(uv U) = dH(tO) - d(uv tO) <0

because: ¢ N(ty). Sincev € N(sq), the nodev is inserted inQ) at some point. When it is
removed from, A, (u) is computed and, since it is negative, the efige) is added ta¥;.

19

=) Only edges that belong to a path i from s, to a leaft, are considered. The
conditionv ¢ N(sq) is never violated because the traversal from the leavesetodibt,
and consequently, the addition of edgesq is not continued when a nogebelongs to
N(sp). If an edge(u,v) is added, the conditio\,(u) < 0 is fulfilled. Hence,A(u) =
ming,er, (dg(ty) — d(u,ty)) < A,(u) < 0. Therefore, there is a leaf such thati(u, ty) >
dy(to), i.e.,u & N(tg). O

Theorem 3 Let Vi denote the set of nodes @fs partial shortest path tred3. LetGp =
(Vg, Ep) denote the subgraph 6f that is vertex induced byz. The complexity of Phase 1
and 2 started from, is Tpjjkstra(|GE)-

Proof: The number of nodes af'z is denoted byn/, the number of edges by'. The
complexity of Phase 1 corresponds to the complexity of a S&&IRch inG 5 started from
so, 1.€.,0(n’ +m’) outside the priority queue plug insertandn’ deleteMinoperations plus
at mostn’ decreaseKegperations. The initialisation of the (tentative) slaaksPhase 2 can
be done during Phase 1 without any additional effort. DuRhg@se 2, at most nodes are
processed. For each node, only a constant number of opesasiperformed, particularly,
only one edge (to the parent node) is considered. O

3.2 Speeding up Construction

In the optimal case, the sizes of the partial shortest padsis are bounded by a small
multiple of the neighbourhood siz€. However, in less balanced cases, the trees can get
quite big. Figure3.7 gives an example of such a scenario. It shows the road netidtdly
including ferry connections. When the search starts fromder, close to a harbour so that
a very long ferry edge is relaxed, the search cannot be abontd the arrival poinp of the
ferry has been settled and deactivated. This means thataalkrthat lead to nodes whose
distance froms is less thani(sq, p) have to be traversed. In our example, it might be the
case that instead of a local area almost the entire countnyassed when, for instance, the
edge Genoa—Palermo is relaxed.

In order to deal with this problem, we introduce the concdpmavericks An active
nodew is declared to be maverickif d(so,v) > f - dy(so), wheref is a parameter. When
all active nodes are mavericks, the search from passivesnsa® longer continued.

In our example, we now have the following situation: Whendkarch is started from
Genoa, then Palermo and the arrival points of the otherefeare mavericks because they
are very far away from Genoa. Hence, a local area around Ggsearched until all nodes
that have been reached by road have been deactivated. Tibesgedrch on the roads is not
continued, but the arrival points of the ferries are setiti@shediately. Thus, the search has
been restricted to a local area plus a few remote nodes wheferries arrive.

However, this improvement has a disadvantage. Abortingelaech at the passive nodes
abolishes the guarantee that only shortest paths are féondistance, it might be faster to
drive from Genoa to Palermo by car (crossing the Strait ofgiesfrom the southern tip of
the Italian mainland to Sicily by ferry) instead of using tieect ferry link. If we abort the
search on the mainland, the direct ferry connection mighttomgly added to the highway
network, which should contain only edges that belong to ssinoetest path.

20

Figure 3.7:The road network of Italy including ferry connections.

Theorem 4 The accelerated construction method yields a superseedfitthway network.
Proof: The «)-part of the proof of Theorerh still holds. O

Hence, queries will be slower, but still compute exact ségirpaths. Figur&.8 compares
the precise construction method from Sectibf with the accelerated method from this
section.

The parametef enables us to adjust the trade-off between constructiomaear; time.
f = oo yields the precise method from Secti®i, which is comparatively slow, but permits
the best query times because the exact highway network ipuiaa. f = 0 leads to a very
fast construction method, which adds a lot of needless e@dgbs highway network, which
slow down the queries. In Secti@h2 we will look for a good compromise between these
two extreme choices of.

3.3 Contraction of the Highway Network

Theorem 5 The highway network can be contracted in ti@@n + n).

Proof: In order to determine the 2-core 6f;, we can use a simplified version of the more
general algorithm presented i2][We remove nodes of degree one (and the incident edge)
until all remaining nodes have degree at least two. (Notettlearemoval of such a node
reduces the degree of another node so that a new degree-@@mearoemerge.) During this
process, we manage a list that contains the roots of thenatacees. After the 2-core has

21

(b) The accelerated construction method
(Section3.2). Active nodes whose distance

continued. The shortest path fros to v is no longer continued. The shortest path from
found. sp to v is notfound.

Figure 3.8:Comparison between different construction methods.

been determined, each rootnitiates a traversal of the corresponding tree: each node
of the tree (except the root) creates a dirgobrtcutto the root, i.e., a directed edge, r)
whose weight is equal to the length of the already existirig framw« to . For an example,
refer to Fig.3.9.

For each node that has degree two in the 2-core, but has notlssgned to a line yet,
the line is traversed in an arbitrary direction until an emidp a node of degree greater than
two, is encountered. Then, the line is traversed in the sevdirection: each node creates a
shortcut to the already known endpoint. Finally, after theos\d endpoint has been reached,
the line is traversed another time: each node creates ashtwtthe second endpoint. Note
that there is also an undirected shortcut between both ems$p&ome special cases, namely
cycles with and without an exit (a node of degree greater thaf), have to be dealt with
appropriatelyt. Figure3.10gives an example. O

Highway Hierarchy. The result of the contraction is the contracted highway netw’,
which can be used as input for the next iteration of the canstmn procedure in order to
obtain the next level of the highway hierarchy.

2For directed graphs, we basically pretend that the graphunesected and determine the components
as usual. However, a shortcut fromto v is added only if there is a corresponding path fraro v in the
directed graph. In addition, we add shortcuts from the eimdpto the nodes inside the component iff there is
a corresponding path in the directed graph.

22

Figure 3.9:The2-coreof the highway network from Fig2.4 and anattached trewith shortcuts

Figure 3.10:The2-coreof the highway network from Fig2.4 containing five lines. Both
endpointsof a line are connected by an undirecttbrtcut There is a directedhortcut
from eachinner nodeof a line to bothendpoints

23

Chapter 4

Query

In Section4.1, we define thehighway hierarchyas a multilevel graph and present an al-
gorithm that finds for given nodesandt a path in the multilevel graph that corresponds
to a shortess-t-path in the original graph. The algorithm is a modificatidrtiee bidi-
rectional version of KSTRA's algorithm, butwithout abortingwhen both search scopes
meet. In Sectiod.2, we explain how the multilevel graph can be represented omanlevel
graph enhanced by some additional data. Furthermore, weatechow the multilevel query
algorithm can be adapted to the new situation. Note that thiglevel representation of Sec-
tion 4.1 simplifies the proof of correctness, while the one-levetespntation of Sectiof.2

is more suitable as a foundation of an implementation. IniGeel.3 we show that the
naive abort-on-success criterion (“abort when both seacdpes meet”) would invalidate
the correctness of our query algorithm. Therefore, we pitessenore sophisticated criterion
that preserves the correctness.

4.1 Multilevel Query Algorithm

The highway hierarchyg = (V, £) consists of the graphS,, G, G, ..., G, which are
arranged inL + 1 levels. For each node € V and each € {j | v € V;}, there is one
copy ofv, namelyv;, that belongs to level of G. Accordingly, there are several copies of
an edgeu, v) whenwu andv belong to more than one common level. These edges, which
connect two nodes in the same level, are calledzontaledges. Additionallyg contains

a directed edgéu,, vsy1) for each pair, € Vy,vp11 € Viyq, Wherev, andv,y; are copies
of the same node € V. These additional edges are caliezitical and have weight 0. For
each node, not only one valu€y (v) is known, but for each levél < L, there is a distance
d% (v) from v to the H-closest node in the cor&, of level /; if a nodev does not belong to
G, d5(v) is defined to beroco; furthermored% (v) := +oo. Correspondingly, we use the
notation\V*(v) to refer to the sefv’ € V/ | d(v,v') < d%(v)}, which is theneighbourhood
of v in the graphG,. Note that the neighbourhood of a node that belongs to a coemto
is unbounded, i.e., it contains all nodes of the core of tlreesponding level. The same
applies ta\V L (v), for anyv. Figure4.1gives an example of a highway hierarchy.

The multilevel query algorithnthat works ongG is a modification of the bidirectional
version of DJKSTRA'S algorithm. The source and target nodes ofsanquery are the
corresponding copies afandt in level 0. For the time being, we omit the abort-on-success
criterion, i.e., we do not abort when both search scopes, ingstontinue until both searches

24

terminate; then, we consider all nodes that have been g¢étden both sides as meeting
points and take the shortest path that has been found by #asisn We daot have to
apply the modifications presented in Appendixwhich ensure that only canonical shortest
paths are found; this is required only during the constamcprocess. We introduce two
restrictions:

1. No horizontal edge in levelis relaxed that would leave the neighbourhobd(v*)
of the corresponding entrance poinit. Each node that belongs to the core and has
been settled via a horizontal edge that leaves a compone e node that has been
settled via a vertical edge is amtrance point In addition, the source and the target
nodes of the query are entrance points. ¢beesponding entrance poiof a settled
nodev is the last entrance point on the pathito

2. Components are never entered using a horizontal edgeedge(u, v) entersa com-
ponent if eitheru belongs to the core andto a component or belongs to a line
andv to an attached tree. However, an edge from an attached teeknleavesthe
attached tree and does not rank among the edges that entepament. Note that the
endpoint(s) of a component do not belong to the componertblihe core (or to the
line in case of the root of a tree that is attached to a line).

Figure4.2is a schematic diagram of a multilevel query, Fig3gives a two-level example.

Theorem 6 For any givens,t € V, the multilevel query algorithm finds the shortest path
fromstotinG.

Proof Idea: It is known that the bidirectional version ofiIXSTRA’'s algorithm works cor-
rectly. We have to show that the imposed restrictions do fietiathe correctness. When
Restriction 1 applies, it is always possible to switch tornle&t level using a vertical edge.
Due to the definition of the highway network, it is guarantdeat the corresponding part of
the shortest path which we are looking for can be found in g level. A path froms that
entersa component is not traversed due to Restriction 2. Howekam the point of view
of ¢, this pathleavesthe component so that the edge that has been skipped dueisgdinch
from s can be relaxed in the reverse direction during the search frddence, the path can
be found in spite of Restriction 2. These arguments can be ins&n inductive proof over
the number of levels.

Proof: In a graphG = (V, F), for two given subsets, 7" C V' and an initial weighto for
each node irt and each node i, amulti-source-multi-targefMSMT) search determines
the shortest path of all paths from a node S to a nodet € T', where the initial weights
of s andt are added to the corresponding path lengths. An MSMT searefuivalent to a
normals-i-search inG := (VU {5, t}, EU{(8,s,w(s)) | s € SHU{(E t,w(t)) |t € T).
(@ is generated by adding two pseudo-noglesd: to G; eachs € S can be reached via an
edge froms, which is weighted by the initial weight of and, correspondingly, ea¢te T’
can be reached from)

Let G, denote the highway hierarchy that consists only of the &vél+ 1, ..., L. Note
thatG, = G. Furthermore, lefj, denote the highway hierarchy that consists of the core
of level ¢ and the complete levels+ 1,7+ 2,...,L, i.e., G, is equal toG, without the
components in level. We prove the following more general statement by induction

25

Figure 4.1:A highway hierarchyg = (V, £) of the graph given in Fig2.4 consisting of
two levels: Gy = (Vp, Ey) (level 0’') and G; = (Vi, E7) (level 1'). As in the previous
examples, the neighbourhood siZes 3. Nodes and horizontal edges in levear@ plotted
in grey. There are directecbrtical edgefrom level 0 to level 1Horizontal edges in level 1
are red. The nodes in level 1 are coloured by tyjpee nodesline nodes andnodes that
belong to the cor&’, = (V/, E'). uy € Vy andu; € V; are copies of the node € V.
(ug,v0) € Eg and(uy, v1) € E; are copies of the eddes, v) € E. The third closest node
to u; in G is wi. Hence,d}; (u) would be equal tel(u, w) if there was another level in
the hierarchy. However, since there are only two levels (i.e= 1), d}, (u) is defined to
be +co.

@ entrance point to level (0
@ entrance point to level |1
@ entrance point to level 2

Figure 4.2:A schematic diagram of a multilevel query. Only the searaltstl from the
source node is depicted.

26

(c) Search in the highway network.

Figure 4.3:An example of a two-level query. Treearch spacérom thesource node
and from thetarget node is represented; thick edges are part of the shortest patier Af
the local search is completed, i.e., the bordet&/¢f) andN(t) have been reached (a), we
switch to the next level (b). The further search takes pladbe highway network (c).

27

Forany/? € {0,1,...,L}, any subsets, T C V,, and arbitrary initial weights of the
elements of and T, the multilevel query algorithm working di finds the shortest path
fromSto .

Base Case. First, we show that the multilevel query algorithm worksreetly inG; . The
additional edges iﬁ’L that leaves or ¢ are interpreted as vertical edges. Hence, all elements
in S andT are entrance points. Since all entrance points belong & Ie\their neighbour-
hood is unbounded so that Restriction 1 never applies. iRestr 2 does not apply either
becausé&;; does not contain any component. Therefore, in this casentittdevel query al-
gorithm corresponds to the bidirectional version 0§ TRA's algorithm, which is known

to be correct.

Induction Step 1. We assume that the algorithm works correctly @n We show that
it also works correctly org, for any given sets, 7" C V, and any initial weights.We
distinguish between two cases.

Case l:there is a shortest path = (5 s, ..., t,tA) which does not include a node that
belongs ta&), = (V/, E}). In this case, Restriction 1 never applies since the neigtitomds
of the entrance pointsandt¢ are unbounded and no other entrance point is encountered on
P. If s andt belong to the same component, Restriction 2 does not apiblgreso thatP
is found. Otherwises andt belong to different components. They cannot belong to two
different lines because two lines are connected only by ¢ne.clf either node belongs to
a tree and the other one to a line, the tree has to be attachbd tme. (Otherwise, the
assumption of Case 1 th&tdoes not intersect the core cannot be true.) Then, Restri2ti
prevents that the tree is entered, but it allows to leaveréd®edo thaP can be found. If both
nodes belong to two different trees, both trees must betathio the same line. Both trees
can be left so that both search scopes can meet within the line

Case 2:all shortest paths fror to ¢ pass through the core. Trees can be used only at
the ends of a shortest path because they have only one ehdpércould have a shortest
path of the form “core — line — core” if both endpoints of thedibelong to the path, but in
this case, we can use the equivalent shortcut between bdgoirts, which belongs to the
core, so that it is sufficient to deal with shortest paths efftirm “tree — line — core — line
—tree”, where the components are optional. In other wofftis; the components have been
left from both sides, the ‘middle’ part of the shortest pa#éomgs, without interruption, to
the core. LetS’ be the setS NV, united with the set of all nodes that belong to the core
and can be reached frofivia an edge that leaves a component. The initial weight ofdeno
s' € S’ is equal to the distanc&(s, s’) in G,. 7" and the corresponding initial weights are
defined accordingly. Paths frofiand? to the elements of’ and7”, respectively, consist
only of edges that either stay inside the same componenaee i component. Hence, both
restrictions do not apply so that for eache S” and each’ € T”, the shortest paths from
to s’ and from¢ to ¢’ are found. Due to our assumption, the algorithm works ctlyren g,
for the setsS” and7”. Hence, the shortest path fraghto ¢’ in ,C’Z, is found. Obviously, this
shortest path is also a shortest path fioto 7 in G,.

Induction Step 2. We assume that the algorithm works correctly @n We show that
it also works correctly org, , for any given sets5,7 C V, , and any initial weights.

28

Restriction 2 does not apply in levél- 1 since this level consists only of the core. Hence,
if both search scopes meet in level 1 before Restriction 1 intervenes, the shortest path
is found. Otherwise, all shortest paths pass throtighLet us consider any shortest path
(s, 8%, ...t tA> fromStot. Take the canonical shortest pdthfrom s* to ¢* in G)_;. Then,

P = (5, P*,@ is also a shortest path frofto 7. Note thats* and¢* are entrance points
to level ¢ — 1. Lets™ andt' be the last nodes oRf* = (s*,... st st ... th ¢l .. %)
that belong to the neighbourhood &f andt*, respectively, i.e.d(s*, s*) > d4*(s*) and
d(t*,tY) > di'(t*). Note thats' andt' are entrance points to levél According to the
definition of the highway network, the subpakti|,:_,,+ belongs toG,, thus, it belongs to
Ge. LetS = VN U,.s N '(s) and for eachs’ € &', w(s') = d(5,s'). T’ and the
corresponding initial weights are defined accordingly. Niiats™ € S’ andt’ € T". For
any nodes’ € S’ andt’ € 77, the shortest path§, s, ..., s') and(t,t,...,t') from5to s’
and fromt to ¢/, respectively, are found because Restriction 1 does nbt apphortest paths
from s to s’ and fromt¢ to . Due to the induction hypothesis, the algorithm WorkAs adifye
on g, for the setsS” and7”. Hence, a shortest paf)i = (3, ¢,...,t',t') froms tot' in G,

is found. We know that the path = (3, P*|,: .+,) belongs toG,. The lengthw(Q) of Q

is equal ta (3", s1) +w(Pi_) +d(t],7) = w(Pls_) +w(Pli_s) +w(Ply_7) = w(P).
Since(’ is a shortest path i, we havew(Q’) < w(Q) = w(P). The algorithm returns
the pathP’, which corresponds t@’ when the edgess’, s') and (¥, ') are replaced with
shortest paths if,_, from §to s’ and from? to #'. To sum up,P is known to be a shortest

path from5to ¢ in @71 and the algorithm returns a path, whose lengthuo(P’) = w(Q’)
is less than or equal to the length Bf Hence, the algorithm returns a shortest path feom
tozing, .. O

4.2 Collapse of the Vertical Dimension

So far, we allow that several copies of the same node are edadthowever, we can show
that it is sufficient if at most one copy of a node is reachedharizontal edge. We enhance
our algorithm by adding the following rule:

Let us assume that exactly one cappf a nodev in leveli has been reached via
a horizontal edge and another horizontal edge is about telared to another
copy v; of v. Then, only the copy with the smaller tentative distanceusho
be inserted (or remain) in the priority queue or — if the teméadistances ob;
andv; are equal — the copy in the lower level. (Note that;ihas already been
settled, then the tentative distancevpiis greater than the tentative distance of
v; since we assume that no horizontal edge has weight 0. Indkis the edge
leading tov; is disregarded and stays in its settled state.)

Lemma 4 The above rule does not invalidate the correctness of therign.

Proof: Case 1.The tentative distances differ. Independently of the leamledge that leads
on a pathQ from s to a copy ofv cannot belong to a shortest pathfrom s to ¢ if there

is a shorter path)’ to another copy oty because, then, the replacement of the subpath

Q = P|s—, by Q" would yield a shorter pat#’.

29

Case 2.The tentative distances are equal. It cannot be wrong t@ptieé lower level
copy in this case because the lower level is a superset ofighethlevel. Furthermore, a
higher level can be reached from a lower level at any timeleathe converse is not truél

As a consequence of the above rule, it is not necessary towardp using a vertical edge
if all horizontal edges could be relaxed without breachimgtRction 1.

Due to these observations, we can let the vertical dimertapse. We can interpret
the highway hierarchy as one plain graph, i.e., there are no copies of the nodethdistd
over several levels. Basically, this graph correspondbeatiginal graphG enhanced by
shortcuts and some additional data: each gdge) is assigned a maximum levé{u, v),
i.e., it belongs to the levels 1, .. ., ¢(u,v); each node is assigned to at most one compo-
nentc(v); a component(v) belongs to a certain levé{c(v)), which is equal to the level its
inner edges belong to. With this interpretatiordoin mind, we can get another view of the
multilevel query algorithm. Let us consider the search fittwn source node; the search
from the target works analogously. Each reached nede assigned a certain search level
ls(u). OnashortestpatR; = (s = s(,...,81,...,87,...,82,...,5,...), the search levels
increase monotonically: the first nodes up to and includinigelong to search level ; is
the entrance point to level 1, all successors up to and inud belong to level 1s, is the
entrance to level 2, and so on.slf belongs to a component in levélthen there is another
entrance poing,, namely, the first node on the paththat belongs to the core of levgloth-
erwise, we have, = s;. The entrance poirt,,, is the last node on the paththat belongs
to NV4(s}). An edge(u, v) can be relaxed only if(u, v) > ¢,(u). A shortest patt from s to
t hasthe formis = sj, ..., S1, .., Shyee oy Sty Shyeeyty ooyttt oty =
t), wheres, andt;, are omitted if both search scopes meet inside a componesitety|

4.3 Abort-on-Success

In the bidirectional version of DKSTRA’s algorithm, we can abort as soon as both search
scopes meet, i.e., there is one nedbat is settled in both search scopes. Then, the shortest
path P from s to ¢ does not necessarily consist of the shortest paths freonv and fromwv

to ¢, but it is well known that it is always ensured that the riglgating point,’ has already
been reached from both sides. The following lemma is a gésatian of this fact.

Lemmab If d, + d; is an upper bound for the length of the shortest path, all sosleose
distance froms is less thand, have been settled in the search scope,odnd all nodes
whose distance fromis less thani; have been settled in the search scopg dien there is
a shortest pathP? = (s = sg, s1,...,s;, 0, t;,...,t1,to = t) such that all nodes, andt,
have been settled in the search scope of ¢, respectively, and’ has been reached in both
search scopes.

Proof: Let P = (s,...,s', v, ', ... t) be a shortest path fromto ¢. The distance from
to the first node/’ that is unsettled in the search scopesa$ greater than or equal ..
The fact that the predecessoof v' has been settled implies théthas been reached from
s. Fromw(P) < ds + d;, we can conclude thak(v', t) = w(P) — d(s,v") < d;. Hence,
d(t',t) < d, because we exclude edges of weight 0. Therefdreas been settled in the
search scope dfso that’ has been reached frotras well. O

30

Thus, if one node is settled in both search scopes, the precondition of Lemiméulfilled
ford, = d(s,v)andd, = d(t,v). Therefore, the shortest path can be determined by choosing
the nodev’ as meeting point that has been reached in both search scogeasiaimises
d(s,v") +d(t,v).

Unfortunately, we cannot adopt the abort-on-successrioniteas it stands because, in
general, the multilevel query algorithm does not fulfil thregpndition of Lemm& as sev-
eral edges are not relaxed due to Restriction 1 and 2 so thaamweot guarantee that all
nodes up to a certain distance have been settled. In othéswibwe aborted the search, it
might happen that we miss the shortest path in the case #hahthrtest path contains one
of the skipped edges. In contrast, we have already showthalgorithm without abort is
correct: if an edge that belongs to the shortest path is tented (e.g. a component is not
entered), then it is — at some point in time — relaxed from theroside (e.g. the component
is left). Thus, our multilevel query algorithm has the chate improve the tentative result
after both search scopes have met. Nevertheless, inste@ltofg until the search is com-
pletely finished, we can use a less conservative approacthwélies on the following very
general and self-evident lemma.

Lemma 6 After both search scopes have met, we can abort as soon aswvexcadethat
we would be able to improve the (tentative) result if we cargd.

The next lemma provides a version of Lemfntnat is more specific to our situation.

Lemma 7 After both search scopes have met, we can abort as soon a=eitteésn that for
all edgese = (u, v) that have been skipped at nodethe edge: will not be relaxed fromy
during the oncoming search.

Lemma? trivially applies as soon as all skipped edges have beera@ltom the other
side: obviously, this implies that they will not be relaxedtihe future (since each edge is
relaxed at most once). However, we can do better. A searehdes said to befinished
when there are no reached but unsettled nodes in lewebelow. Note that if the search
level 7 is finished, edgesin levels/(e) < ¢ cannot be relaxed any longer.

Lemma 8 Let & denote the set of all horizontal edges that have been skigpedg the
search frons. &, is defined accordingly. After both search scopes have maetawabort as
soon as the search fromrhas finished search levé) := max.c¢, £(e) and the search from

has finished level, := max.ce, ((e).

Proof: When the search from has finished search levél, it is certain that no edge
that belongs to a level(e) < ¢, will be relaxed during the oncoming search, in particular,
no edge that has been skipped during the search franfl be traversed by the backward
search. The same argument applies to the reverse searctiatire O

Improvements of the Abort-on-Success Criterion.

1. If level ¢ — 1 is finished and a component in levehas not been entered yet, it will not
be entered in the future either because the only way to emi@m@onent is via a vertical
edge from the level below. If a component is entered, i.eqaen that belongs to the
component is settled, all edges that leavare relaxed including the shortcut(s) to the

31

endpoint(s) of the component. These shortcuts correspoie tshortest paths fromto
the endpoints and, thus, they contain the reverse edges bbtizontal level edges that
enter the component. From these facts, we can conclude beat levell — 1 is finished,
the reverse edge of a horizontal edge that enters a comporewnel ¢ either has already
been relaxed or will not be relaxed at all. Therefore, whersiip an edge that enters
a component, it is sufficient to pretend thalbelongs to level(e) — 1 instead of/(e),
i.e., we can redefing to be equal tanax,c¢, (¢), wherel (¢) := ((e) — 1, if e enters a
component, and (¢) := /(e), otherwise.

However, we have to deal with the special case that the roanddttached tree does
not belong to the core, but to a line. When such a root is rehdteoutgoing edges,
including the shortcuts to the endpoints of the line, araxa&ll immediately so that it is
ensured that the preceding statements apply to this spadalas well.

2. For eachr € {s,t} and each level, we manage a valug., = min(,,ce, , d(z,v),
where&, , := {e € &, | '(e) = (}. 0, is the minimum distance from to the endpoint
v of a level#-edge(u, v) that has been skipped. Let= t if + = s and vice versa, and
let u be the minimum element in the priority queueifWhen a tentative shortest path
P from s to t has been found and , + d(z,) > w(P), then we can ignore the fact that
level-/'-edges have been skipped in the search scope icé., we can pretend that, ,
is empty, because it is certain that we will not find anotheéipath that contains an edge
e € &, and is shorter tha#.

3. Letus consider the search started frarBetween the meeting of both search scopes and
the fulfilment of the advanced abort criterion, we do not haveelax edges from nodes
v, that belong to a level > /;, unlessy, belongs to a component in leveand? = 7, + 1.
Since the highway hierarchy does not contain any downwageé®dahe continuation of
the search in the higher levels does not provide any charidegling a shorter path that
uses a reverse edge of a skipped edge in a lower level. Theagomaent applies to the
search started from

Corollary 7 For any givens,t € V, the improved multilevel query algorithm finds the
shortest path from to ¢ in G.

Proof (Sketch):Follows from Theoren®, Lemma4, Lemma8, and some remarks in Sec-
tion4.2and4.3. O

32

Chapter 5

Implementation

An exhaustive description of the implementation would gpdvel the scope of this thesis so
that we restrict ourselves to some important aspects. Tdgrgm was written in C++ from
scratch, not using any libraries, except for the C++ Stahdamplate Library. We make
extensive use ofjleneric programmindechniques using C++’s template class mechanism.
This applies to the graph data structure (Sectdnl), the priority queue (Sectioh.1.2),

and the implementation of IlKSTRA’s algorithm (Sectiorb.3). Our current implementation
leaves room for reducing both running time and memory us@ége.main program and the
auxiliary programsconsist of 4 555 and 2 415 lines of code, respectively.

5.1 Data Structures

5.1.1 Graph Representation

The graph representation is based on the remarks in SetfiohVe distinguish between a
dynamic and a static version of our graph data structure dyhamic version is used during
the construction, while the graph is modified, particuladiye to the addition of shortcuts.
Then, we switch to the static version, which is more compadtalows efficient traversals
of the graph; it is used by the queries.

Static Graph. After the construction has been completed, the graph iEst&t., there is

no need of incorporating any changes while queries are psede Therefore, we represent
the graph in aradjacency arraywhich is very space-efficient and allows fast traversal of
the graph. The undirected graph is represented as a bgtirgcaph, i.e., each undirected
edge is represented as two directed edges. There are tws,avre for the nodesNode)?

and one for the edge&dge). The edges are grouped by the source node and store only the
ID of the target node and the weight. Each ned&nows’ the index of its first outgoing
edge in the edge array. Furthermore, it stores the levelghbeurhood radiug?; (). In

order to deal with the additional requirements of the hightararchy, we extend this data
structure in the following way. For each nodeall outgoing edges$u, v) are grouped by

1The auxiliary programs provide functionality to converffelient graph file formats, draw graphs, and
evaluate log files.
2Class names that will appear in Fi§j2are given in parentheses.

33

the maximum level(u, v) they belong to. Between the node and the edge array, we insert
another layer: for each nodeand each level > 0 thatu belongs to, there is level node

ug (St ati cLevel Node) that stores the valué:,(v) and the index of the first outgoing
edge(u, v) with the maximum level. All level nodes are stored in a single array. Each
nodeu knows the index of the level nodg. Figure5.lillustrates the graph representation.
Furthermore, each node belongs to at most one compo@enpponent), which belongs

to a certain level.

0 0
nodes dy dy
i i
level nodes d}f d%, d% dl}{ d}{ d?{ d:?{
I I \
edges

Figure 5.1:Adjacency array, extended by a level node layer.

Dynamic Graph. During the construction, the graph is modified in two respedist,
already existing edges are added to the next level of thea@gtnierarchy, i.e., the maxi-
mum level of the edges is increased; second, new edges, nahwtcuts, are added. We
use a variant of the static graph data structure to handdedymamic situation. When an
edge(u, v) is promoted to the next level,’'s edges are regrouped by a simple swap oper-
ation and the concerned level node updates the index of stsoitgoing edge. The level
nodes Dynam cLevel Nodes) are not stored in an array, but in a linked list in order to
allow the insertion of new level nodes. In an additional edtgek, we store new edges
(Conpl et eLevel edEdge). Shortcuts from tree nodes to the root and from inner nodes
to the endpoints of a line are added to this stack. Shortetisden both endpoints of a
line arenot added to the stack. Instead, in the main edge array, we eplattb edges that
lead from the endpoints to the first respective inner nodébyew shortcuts. The replaced
edges are pushed on the stack. That way, we make sure thaathkecentains only edges
that are irrelevant to the further construction process.

When the construction has been completed, the dynamic gsapbnverted into the
static graph. All level nodes are sorted into an array: allesdew; precedes, iff v < v
oru = v andk < (. The additional edges are sorted by source node and levely die
merged with the original edge array in order to obtain oneeedgay that contains all edges.
Figure5.2gives a UML class diagraij3] of the concerned classes.

3In our UML class diagrams, atlependencieare stereotyped as bind, i.e., they are used to represent the
instantiation of a template class with actual parameteosvaver, for the sake of clarity, we omit the keyword
<<bi nd>> in each of these cases. Furthermore, we enhance the corfcgpheralisationby providing
template parameters for the superclass: we extend theniizdian of a template class without explicitly
representing the instantiation.

34

next Level »

addi ti onal edges

DynamicLevelNode

Level I D

1

<Dynani cLevel Nodes>

)

DynamicGraph

|

1

DynamicLevelNodes

<Stati cLelveI Nodes>

StaticGraph

0.

firstEdge .
Edge < < 4 StaticLevelNode |~
+wei ght (): EdgeWei ght +dH(): EdgeWei ght
+ |+i sH ghwayEdge(): bool
+i sShortcut (): bool
-
. N
target > LinkedLevelNode
\/ < dlevel 0 node
sourcep N_ o~
CompleteEdge =1 Node Tovel ()
T bel ongs to»
CompleteLeveledEdge Component
+level (): LevellD +level (): Level ID
* *
1 1
Components <>——
1 1 0 ; Level Nodes: ypenane ,

StaticLevelNodes

Figure 5.2:A UML class diagram of the graph representation.

5.1.2 Priority Queue

The priority queue is implemented as a binary heipn@r yHeap) (e.g. [7]), which is
realised as a template class. Its elemeBisn@ar yHeapE!l enent) are composed of a
key and associatedata The key specifies the priority of an element, i.edeleteMin
operation returns the element with the smallest key. Tha dhaject contains application-
specific attributes, e.g., the index of the parent in thetssbipath tree. A nodeNbde)
has two pointers to elements in the priority queue, one ferftinward search and one for
the backward search. Thus, we separate the data that isdétathe search process from
the representation of the static graph: Initially, eachenbds only two unused pointers to
binary heap elements. Not until a node is reached duringralsaais added to the priority
gueue and enhanced by additional data that are stored ih&denary heap element. This
approach is reasonable with respect to the space consumiaitause only a small fraction
of the nodes is reached during a multilevel query.

We need several variants of the priority queue, realiseddprapriate instantiations
and extensions of the binary heap template class: a nornni@ntaNor mal PQueue)

35

that is used by DDKSTRA'S algorithm, a variant used by the multilevel query aldumit
(HwPQueue), and a variant used during the constructi@orist r PQueue). For the first
two variants, we use the tentative distance (of tiaoge\Wei ght) as key. For the con-
struction, we need a priority queue that has fheO property(FI FOBi nar yHeap) (see
SectionA.l), i.e., if there is more than one minimum element, then tlteoklement is
removed first. For this purpose, we can extend the binary hsiag the tuple (tentative dis-
tance, timestamp) as key (see Sectlop). Each variant of the binary heap has its respective
elementsilor mal PQEl enent , Hw PQElI enent , Const r PQElI enent). The data ob-
ject PQueueNode) that belongs to a normal priority queue element contaiesrttlices of
the parent node in the shortest path tree and of the edge fi@patrent. The data objects that
belong to the other two priority queue elements are extessad PQueueNode. In case
of the multilevel query, the data obje®QueueNodeHwy Sear ch) contains, in addition,
the search level and the distance to the border of the neighbod of the current entrance
point. In case of the construction, the data obj&@ (eueNodeConst r uct i on) con-
tains the slack and values that are required to test the abtation. Figure5.3 gives an
overview in the form of a UML diagram.

1 Dat a: t ypenane |
! Key: t ypenane 1!
o

<1 BinaryHeap |- T

Al

<PQueueNode, EdgeWéi pht> <Dat afpai r <EdgeWeéi ght, Nodel D> >

|
|
| | !Gata: typenane ! 1
|

|
<PQueueNodeHwySedr ch, EdgeWéi ght > A
! <PQJeueNodeC!onst ruction>
1

1
NormalPQueue HwyPQueue ConstrPQueue

1 Dat a: typenane 1
IKey typenane !

* [Fp——— - 1
BlnaryHeapEIement |< > Node

A A

<PQJeueNode EdgeVki ght > 1 <PQJEueI\bdeConst ruction,

————— 1 pai T <EdgeViéi ght, Nodel D> >
|

: <PQJeueNodel-MySeArch, EdgeWei ght > .
1

NormalPQElement HwyPQElement ConstrPQElement

i [

PQueueNode <]—

PQueueNodeHwySearch

1

PQueueNodeConstruction

Figure 5.3:A UML class diagram of the priority queue and related classes

36

5.2 Construction

Exact Arithmetic. In order to guarantee the uniqueness of the canonical sihqaghs,

it is important to exclude arithmetic inaccuracies. Theref the edge weights are integers
between 0 an@®® and are stored in double-precision floating-point numbehsch allow
exact arithmetic in this range. If necessary, given edgghiesiare mapped to this range in
such a way that it is ensured that the length of a shortestratir exceed®™.

Initial Step. For each node, € , we compute and store the valdg(s,). This can be
easily done by a DKSTRA search from each nodg that is aborted as soon &6 nodes
have been settled.

Phase 1. The abort criterion presented in Secti®i can be refined in the following way:

When a node is settled using the path’ = (s, s1, ..., p), thenp’s state is set
to passive ifp ¢ N(s1) and| P’ N N(s1) NN (p)| < 1.

Lemma 9 The refined abort criterion does not invalidate Theorem

Proof: In the proof of Theoreni, in order to obtain a contradiction, we had to show that
there were at least two nodesM(s;) N N(p), namelyu andv. Due to the refined abort
criterion, we now have to prove that, under the same assangtihere are at least two
nodes inN(s;) N N(p) that belong toP|s,—, = (so, s1,...,p) as well. We know that

is not a predecessor of (due to the choice of,). Furthermoreyp cannot be a successor
of p. (If v was a successor of Lemmal would yieldp € A(s;) sincev € N(s;). This
would be a contradiction to the first part of the refined abotédon (p ¢ N(s1)).) Hence,

U, v € Plgy—p- O

This criterion, in turn, can be reformulated to obtain:

When a node is settled using the pattso, sq,...,w, 7, w,...,p), where
d(s1,v) < dg(s1) < d(s1,w), thenp’s state is set to passivejifis a successor
of v andd(u, p) > du(p).

Lemma 10 (p € N(s1) and|P|s,—, N N(s1) N N(p)| < 1) < (pis a successor af and
d(u,p) > du(p)), i.e., both formulations of the refined abort criterion auévalent.

Proof: It is easy to see thap"¢ N(s;)” and “p is a successor af” are equivalent. We
still have to prove thatP|s,—., N N(s1) N N(p)| < 1 < d(u,p) > du(p)), provided that
p & N(s1) [*]is true.

<) d(u,p) > dy(p) impliesu ¢ N(p). Furthermore, we have ¢ N(s;). Hence, we
obtain (by Lemmd) Vz € P|,, .z : € N(p) (sincep is a successor af (due to [*])), and
Vi € Ply—p: x & N(s1). Thus, onlyo can belong taP|s,—., N N (s1) N N(p).

=) We prove the contrapositiond(w, p) < dy(p) impliesw € N(p). Furthermore,
we havetr € N(s;). Lemma3yieldsu,v € N(s;) N N(p). Due to its definitionu
cannot be a predecessorsgf Furthermorey cannot be a successorof(Otherwise, since
v € N(s1), Lemmal would yield p € N{s1), which would be a contradiction to [*].)
Henceu, v € Ply,—., N N(s1) N N(p). O

37

This version of the criterion can be tested efficiently: Iderto find the first nodev
outsideN/(s;), the distance to the border of the neighbourhoog;a$ set tody (s;) at the
nodes; ; each descendantof s; adopts the distance to the border from its pareint B and
decreases it by the weight of the edgey). w is found as soon as this value gets negative.
In order to be able to comput&u, p), each descendant ofadopts the valué(s, u) from
its parent. Since the distance frogto the current node is always known, we can use the
formulad(a, p) = d(so, p) — d(so, w) to obtain the required value.

Corollary 8 The refined abort criterion preserves the correctness ottmestruction pro-
cess and can be tested in constant time for each node thétledse

Note that the refined abort criterion can increase the groivihin some cases because
IN(s1) N N(p)| < 1 onlyimplies|P|s,—, N N(s1) N N(p)| < 1, but notp & N(s1), i.e.,
sometimes the refined abort criterion is not fulfilled whea dhmiginal criterion is fulfilled.
However, the following lemma states that this overheadngdd.

Lemma 11 If the original abort criterion is fulfilled for some nogewhile the refined crite-
rion is not, andy is a direct successor gfon a shortest path, then the refined abort criterion
is fulfilled forgq.

Proof: We assume thdiV(s;) N N(p)| < 1, butp € N(s;), i.e., the original criterion is
fulfilled, but the refined one is not. Letbe an arbitrary direct successorobn a shortest
path. In order to obtain a contradiction, let us assumegtt@at\V/(s;). Then, Lemma yields
q € N(p). Hencep,q € N(s1) N N(p), which is a contradiction to\V(s;) N N(p)| < 1.
Therefore, we can conclude that¢ AN(s;). Furthermore|N(s;) N N(p)| < 1 implies
|P|sy—p NN(s1) NN(p)| < 1. In order to obtain a contradiction, we assume t#as, ., N
N(s1) N N(q)| > 1. Since we already know that¢ N{(s;), there has to be a nodeon
P, that belongs tdV(g), but not toN(p). This is a contradiction to Lemnia Thus, we
have|P|s,—., N N(s1) N N(q)| < 1 so that the refined abort criterion is fulfilled for [

During the search of Phase 1, a list of all leave®a$ managed: when a node is settled,
it is added to the list and its parent is removed from it. Thesik the starting point for
Phase 2.

Phase 2. The implementation of Phase 2 is straightforward and basdtedetailed de-
scription in Sectior8.1.

Final Step. After all nodess, have been processed, is made bidirected by adding edges
(v,u) to Ey if (u,v) already belongs td@; .

Contraction. For each node of degree one, we determine its only (unused) edge, which
leads to its parent in the tree.p is added to the list of roots (which is initially empty) and

is removed from the list (if applicable). The ed@ew) is marked as used, and the degrees
of p andu are decremented. If the remaining degree @$ one, these steps are applied
recursively top. After all nodes of degree one have been processed, each abates a
traversal of the corresponding tree and broadcasts its Bwant a unique ID for the tree:
each node of the tree (except the root) stores the tree ID and creates@ shortcutto the
root, i.e., a directed edge:,) whose weight is equal to the length of the already existing
path fromu to . The implementation of the line contraction is straightfard.

38

5.3 Query

We provide a template class that implements several vessibBIJKSTRA'S algorithm. By
instantiating it with appropriate template parametersait be used for the normal version of
DIJKSTRA's algorithm, the bidirectional version ofIlKSTRA's algorithm, the computation
of dy(+), the construction, and the multilevel query. The impleragah of the multilevel
guery algorithm is based on the remarks in Sectich The compliance with both restric-
tions (cp. Sectiod.l) is ensured in the following way:

1. No horizontal edge in level is relaxed that would leave the neighbourhaobd(v*) of
the corresponding entrance point.

Each node that has been reached during the search knowarrith $&vel and the distance
to the border of the neighbourhood of the current entrana® fcp. Sectiorb.1.2). Ini-
tially, the search levels of andt are set to 0 and the distance-to-border value# tes)
andd (t), respectively. When a nodeis reached, it adopts the search level from its
parentp and the distance value minus the weightafv). If this value gets negative, the
neighbourhood of the corresponding entrance point woulefbeTherefore, the search
level of v is incremented, i.e., we try to switch to the next letelf the maximum level

of (p,v) is less than the new search level, this attempt fails: the edgnot be relaxed.
Otherwisep is the entrance point to the new search level: the distanwmitder value of

v is set tody; (p) — w(p, v).

If a nodep belongs to the core and has been settled via a horizontalthdgéeaves a
component, it is an entrance point. The distance-to-boraleles of all its children are
set todY; (p) — w(p,v).

2. Components are never entered using a horizontal edge.

Let c be a component that belongs to ledehnd(u, v) an edge that enters the component
c. Thus,(u, v) belongs to levef as well. During the construction process, when the com-
ponentc is contracted, the level of the directed edgev) (that enters) is decremented

by one, while the level of the reverse edgeu) (that leaveg) remains unchanged — this
distinction is possible because we use a bidirected gragplesentation. By this means,
there is no need of explicit checks during the query, but fié®in 2 is respected au-
tomatically: a component in levélcannot be entered using a horizontal edge since all
crucial edges have been downgraded so that they do not apgeael ¢.

The implementation comprises the basic abort-on-suceéssi@an and all three improve-
ments as described in Sectidrs.

Each node in the shortest path tree stores a pointer to gsnpainhen we follow these
pointers starting from the optimal meeting point of bothreka&copes until we reachandt,
we can reconstruct the shortest path. In order to do so, wetieaexpand shortcut edges so
that we obtain the complete path in the original graph. Weidea basic recursive routine
to solve this problem: When an endpoinbf a shortcut(u, v) is discovered, all outgoing
edgequ, x) of u are scanned in order to find the right one that leads insideragmonding
line tov. We can easily check whetheiis the right node due to the fact that all nodes inside
a line have shortcuts to both endpoints of the line. Hendigeife is a shortcutr, v) such
thatw(u, z) + w(x,v) = w(u,v), thenz is the right node. If the edge:, =) is a shortcut as
well, we apply the expansion routine recursively. Then, weqg to look for the next node
y on a line that eventually leads to

39

Chapter 6

Experiments

We conducted extensive experiments in order to evaluatpetfermance of our approach.
In total, the experiments took more than 1 190 hours of comguime. 3 930 131 909 670
deleteMinoperations were logged.

6.1 Environment and Instances

Environment. The experiments were done on a 64-bit machine with 8 GB mamang
and 1 MB L2 cache, using one out of four AMD Opteron processtosked at 2.2 GHz,
running SUSE Linux (kernel 2.6.5). The program was comgiethe GNU C++ compiler
3.3.3 using optimisation level 3.

Instances. Basically, we deal with two test instances, namely, the noativorks of the
United States of America and of Western Europe (Bid.and6.2). The former represents
the road network of the District of Columbia and the 48 cambigs states (all but Alaska
and Hawaii). It was obtained from the TIGER/Line File)] by extracting the relevant
data of all counties and merging them. The latter compriddSutopean countries, namely,
Austria, Belgium, Denmark, France, Germany, Italy, Luxenng, the Netherlands, Nor-
way, Portugal, Spain, Sweden, Switzerland, and the UK. Hta ldas been made available
for scientific use by the company PTV AG. In some cases, weicesur experiments to
the German road network. In all cases, as we deal with urtdolegraphs, we ignored the
restrictions caused by one-way streets.

The original graphs contain for each edge a length and a raggjary. In the USA,
there is the distinction between

e primary highways with limited access (e.g. interstate higys),
e primary roads without limited access (e.g. US highways),
e secondary and connecting roads (e.g. state highways), and

e local, neighbourhood, and rural roads.

In the European road network, there are 13 different caiegioiEach of these categories
belongs to one out of four supercategories, namely

40

Figure 6.1:Road network of the USA. The colours indicate the road categaimary
highway with limited acces®rimary road without limited accessecondary and connect-
ing road. The slowest category (local, neighbourhood, aral road) has been omitted in

this figure.

Figure 6.2:Road network of Western Europe. The colours indicate the oadegory:
, motorway national road regional road. The slowest category (urban street) has

been omitted in this figure.

41

motorway,
national road,

regional or local road, or
e urban street.

We assign average speeds to the road categories, competefoedge the average travel
time, and use it as the weight ef In addition, our European graph contains edges that
represent ferry connections. For these edges, the avaiagsd times are already given
in the input so that we can adopt them as edge weights. Tableummarises important
properties of the used road networks and the key resulteabtperiments.

Table 6.1: Overview of the used road networks and key results. The patearfl is
used iteratively until the construction leads to an empghhiay network. We provide
average values for 10 000 queries, where the source and maxdes are chosen randomly.
‘Speedup’ refers to a comparison withJRSTRA's algorithm'. ‘Efficiency’ [14] denotes
the number of nodes that belong to the computed shortest datided by the number of
nodes that are settled by the multilevel query algorithnr.Germany, we give the memory
usage on a 32-bit machine in parentheses.

USA Europe Germany
#nodes 24278285 18029721 4 345 567
input #edges 29106596 22217 686 5446 916
#degree 2 nodes 7316573 2375778 604 540
#road categories 4 13 13
parameters average speeds [km/h] 40-100 10-130 10-130
H 225 125 100
construction CPU time [h] 4.3 2.7 0.5
#levels 7 11 11
CPU time [ms] 7.04 7.38 5.30
#settled nodes 3912 4 065 3286
query speedup (CPU time) 2 654 2 645 680
speedup (#settled nodes) 3033 2187 658
efficiency 113% 34% 13%
main memory usage [MB] 2443 1850 466 (346)

6.2 Parameters

Fast vs. Precise Construction. During various experiments, we came to the conclusion
that it is a good ideaot to take a fixed maverick factgf for all levels of the construction
process, but to start with a low value (i.e. fast construgtend increase it level by level
(i.e. more precise construction). Talfl€ contains the construction time and the average
query time for several sequences of maverick factors. litiaddo the criteriond(sg, v) >

f - du(so) presented in SectioB.2, we considered to use(u,v) > f - dy(sy) as maverick
criterion, whereu is the (tentative) parent af in the shortest path tree, i.e., the decisive
factor is the length of the incoming edge but not the distdrm® the source node. Good
results were obtained fak(sg,v) > f - dy(so) as maverick criterion using, 2,4, 6, ... as
sequence of maverick factors. These parameters were usaltlédaperiments that follow.

1The averages for DKSTRA's algorithm are based on only 1 000 queries.

42

Table 6.2:Fast vs. precise construction: maverick criterion> f - dg(so). The first
group of experiments starts with the fastest constructiethod (f = 0) and switches to
afixedf > 0. In the second and third grouy,is increased by adding 2 and multiplying
by 2, respectively. If the results for one test instance didsmow promise, the other test
instance was skipped (resulting in blank entries in thesdal#\ very good choice of and

x is marked.
Europe USA
f x constr [h] query [ms] constr[h] query [ms]
004 d(s,v) 2.2 9.57
004 w(u,v) 2.7 8.25
008 w(u,v) 2.9 8.05
0016 w(u,v) 3.2 7.88
0032 w(u,v) 3.9 7.73
0064 w(u,v) 51 7.47
0046810 w(u,v) 2.7 7.76
0246810 d(s,v) 2.3 7.91 4.2 7.48
0246810 w(u,v) 5.9 7.14
004816 d(s,v) 2.5 7.79
004816 w(u,v) 2.7 7.34
01248 d(s,v) 2.2 9.21 3.8 8.06
01248 w(u,v) 3.2 7.14 5.6 7.17
124816 w(u,v) > 12

Best Neighbourhood Sizes. For two levels and/ + 1 of a highway hierarchy, thehrink-
ing factoris defined as the ratio betweehi)| and|E7, ,|. In our experiments, we observed
that the highway hierarchies of the USA and Europe were dlsglssimilarin the sense
that the shrinking factor remained nearly unchanged froral o level when we used the
same neighbourhood siZé for all levels. We kept this approach and applied the s&me
iteratively until the construction led to an empty highwagtwork. Table6.3 shows our
results for various values df.

Table 6.3:Choice of good neighbourhood sizes. For different neightmed sizesH,
we compare the construction time, the number of levels inhigbway hierarchy, and,
for queries between random source and target nodes, thegaveumber of settled nodes
and the average query time. The neighbourhood size that dexs ¢thosen for further
experiments and the minima in the query columns are marked.

USA Europe
Construction Query Construction Query

H t[h] #level #nodes t[ms] H t[h] #level #nodes t[ms]
100 2.3 18 5748 13.02 50 1.8 30 7476 19.37
150 3.0 11 4142 8.22 75 1.9 17 4581 9.81
175 3.4 9 3952 751 100 2.3 13 4103 8.20
200 3.8 8 3895 7.19 125 2.7 11 4065 7.38
225 4.3 7 3912 7.04 150 3.1 10 4119 7.15
250 4.7 7 3955 7.04 175 3.6 9 4256 7.19
300 5.6 6 4109 7.05 200 4.0 9 4413 7.19
400 7.5 6 4517 7.25 300 6.1 7 4962 7.86

43

Figure6.3demonstrates the shrinking process for Europe. Providsdtie neighbour-
hood size is sufficiently large, we observe an almost cohstaimking factor for most levels
(which appears as a straight line due to the logarithmicsofdhe y-axis). The greater the
neighbourhood size, the greater the shrinking factor. Triseiteration (level 6-1) and the
last few iterations show a different behaviour: in the fitstation, the construction works
very well due to the characteristics of the real world roativoek (there are many trees and
lines that can be contracted); in the last iterations, tiggway network collapses, i.e., it
shrinks very fast, because nodes that are close to the boirtlee network usually do not
belong to the next level of the highway hierarchy, and whemigtwork gets small, almost
all nodes are close to the border. Figéré shows a similar shrinking process for the road
network of the USA.

- I I
N H=75 —+— _

7 —
10 H=125 > -
6 TIPS H=175 --%---
107 = H=300 1]
R
5 L B _
10 R N
o 4 LK. X
L - X]
_§) 10 =} %)K s
* 1000 | XY -
“ %
100 |- % _
10 | ~
. \‘
1 1 1 Lo 1y k 1 1
0 2 4 6 8 10 12 14 16
level

Figure 6.3:Shrinking of the highway networks of Europe. For differeetghbourhood
sizesH and for each level, we pIot|E2|, i.e., the number of edges that belong to the core

of level ¢.
9 T T T T T T T T
7 I\ H=100 —— |
100 17 % H=150 > -
6 H=200 -
10°F kS H=300 -
] NN H = 400
> 10| -
£
1000 I~ —
100 —
10 [\‘\ \ —
1 1 1 Lﬂ)k 1 1 1 1
0 2 4 6 8 10 12 14 16 18

level

Figure 6.4:Shrinking of the highway networks of the USA, analogous @ Bi3.

44

6.3 Multilevel Queries

Average Values. Table6.1contains average values for queries, where the source igad ta
nodes are chosen randomly. For the two large graphs we geieagp of more than 2 000
compared to KSTRA's algorithm with respect to both query tihand the number of
settled nodes.

For our largest road network (USA), the number of nodes thaitsattled during the
search idessthan the number of nodes that belong to the shortest pathatbdound.
Thus, we get an efficiency that is greater than 100%. The neiagbat edges at high levels
will often represent long paths containing many notles.

Local Queries. For use in applications it is unrealistic to assume a unifdistribution of
gueries in large graphs such as Europe or the USA. On the bémat, it would be hardly
more realistic to arbitrarily cut the graph into smallerqas. Therefore, we decided to mea-
sure local queries within the big graphs: For each power ofitw: 2%, we choose random
sample points and then use DKSTRA's algorithm to find the nodewith DIJKSTRA rank
rs(t) = r. We then use our algorithm to make @& query. By plotting the resulting statis-
tics for each value = 2*, we can see how the performance scales with a natural meafsure
difficulty of the query. Figurés.5shows the query times. The speedup with respectito D
JKSTRA'S algorithm is shown in Fig6.6. Note that the median query times are scaling quite
smoothly and the growth is much slower than the exponemitaéase we would expect in a
plot with logarithmicz axis, lineary axis, and any growth rate of the for for DIJKSTRA
rankr and some constant powger The curve is also not the straight line one would expect
from a query time logarithmic in.

Against the trend, the query times in Europe drop atkBTRA rank 224, This rank is
very close to the total number of nodes, which means thattiget node is always close to
the border of the road network. In general, the multilevedrgualgorithm does not exhibit
any goal-directed behaviour, i.e., the search space exiarall directions. However, when
the search is started from the border, it gets a ‘trivial sesfsdirection’ because it cannot
spread in all directions. Therefore, the query times improv

The average running time of queries in the German road nktigds.30 ms (cp. Ta-
ble 6.1). Since the German road network consists of rougitynodes, we can expect an
average KSTRA rank of about?! for queries between nodes that are picked at random.
The average running time of queries in the European roadanktitom a random node
to a nodet with DIJKSTRA rank 22! is 5.29 ms. These results suggest that there is virtually
no difference between executing the same query within thren&e or the European road
network. This means that we can use a large road network Eugppe) for all kinds of
gueries; it is not necessary to restrict the search to a parteog. Germany) in order to get
fast queries within this part.

2|t is likely that Dijkstra would profit more from a faster prity queue than our algorithm. Therefore, the
time-speedup could decrease by a small constant factor.

3The reported query times do not include the time for expamtliese paths. We have made measurements
with our naive recursive expansion routine (cp. Seclidhwhich never take more than 50% of the query time.
Also note that this process could be radically sped up bygmgating unpacked representations of edges.

45

221 222 223 224

220

213 214 215 216 217 218 219

212

Dijkstra Rank

46

211

o
S
xEto g
OV E S
€T ¢1 1T 0T 6 8 L 9 S v € 4 T 0 < % m .m 000¢ 00S 00T 0¢
=]
S
L < =25 1 ! !
~ m_lp = QO
o 0 aum ---- [- - - - @D | s c o 33
O O @D - - - - - - - - - N m mw w.w
o@------ - ---- - 4 0 o | a M Lo E
ocoooomt - - - - IR - - - - 4 N e < m
%)
- ------ e ------- Elcolvsvlvo |« O
0 OGO - - - - - M ----0 N e .m ofll-o
I s | L wm 2 o - - -
o oo ----lll----° N o5 Ll m o -+
© 0 00F-------- N o i 4 s 85 e E o -[- - 4
@ - - - - - ~ x a5 E o -4
@ ------- - -- - - 1 e oo EE o - [[]- - -
ocanmmms - - - - - - - - N W m;m 2 o ll--o
DD - - - - - 0t ---4 s 8§ S nwu* om» - [T} -+
o cuusmmso- - - - [l - - 1 N mna 9 g g e @ i - e
o awam - - - -] -- -4 5 B 282 o B o amw -[- -4
0 00 o amay - - - [l - 4 N Wh < o w) o-Ml---+
S
@ oo - - I - - © 8 © x S > ooam - [- -4
@0 capame - Il - - ~ o 39 ™= @ il -- o
0o o - - [- 0 g A = o - [} - - 4
o ooocommmy -l 4 N - m % IM = a»]l - ®Eno
o cumm - - < ke em.m coa - [T} - --4
com - [l 4 N = mmw.nlu o-l---0
= (]
° o -} 4 9, hUY = m < m ° o - - - -+
< m o om I+ =~ Sa .o < m
33 comili| 5 SV 5T 23 © 000 - - - - 4
aoa [+ N LD ppxgpg QO o+l -om
B0 S 2 0c BO
ami | o S O E axoa I} - - «mo
amfo | =5398
1 o T c <
T T T T T T T T T T T 1 © S S ﬂ.v W, T T T T
1
€1 2T TT 0T 6 8 L 9 S v € ¢ T 0 o xS 8 o00s 000T 00z 05 0z
> < — —
n QO =
[sw] swiy A1and 2 <X 0 m 5 (sapou pamasy) dnpaads
L @ @ © O

Figure 6.6:Multilevel Queries. Speedup in terms of number of settledeso

Worst Case. In order to determine the worst case for a query between teatitans in
Europe or the USA, we would have to perform-allpossible queries, which would very
time-consuming. However, we can providewgoper boundor the worst case executing only
n queries: We add an isolated dummy nediethe graph and run onet query for each node
s. Of course, the search fromterminates immediately, while the search frerexplores
the complete search space since the abort-on-succesmaritever applies. Obviously, the
worst case cannot be worse than twice the maximum of thegeeries. By this means, we
obtained an upper bound for the number of settled nodes mieglin Europe (the USA) of
10 326 (8 678), i.e., no more than 0.057% (0.036%) of all n@de®ver settled.

Histograms of these experiments are given in Big.and6.8. We find that the costs
of a search differ from source node to source node. Althougbktreource nodes cause
similar costs, there are a few outliers. We further invegad the costs with respect to
the geographic location of the source node. Figtu@indicates that the search from a
congested urban area is rather easy, while the search framalkarea that is surrounded
by several urban areas is rather difficult. The road netwdr&k congested urban area is
very compact. While the neighbourhood size in terms of thalmer of nodes is always the
same, the geometric neighbourhood size is comparativedyl #ma city. Hence, the search
switches to higher levels before spreading too far away.sTimithe first levels, the search
space stays compact and the scope of the different entramtes pverlap. In contrast, the
search started from a rural area spreads very far away b&fotehing to higher levels. If it
enters several surrounding urban areas when it is still awdével, it gets quite expensive
because it has to traverse all of them starting in a very léetével.

Furthermore, Fig6.9 confirms our earlier statement that the search from nodes clo
to the border is comparatively easy: for instance, the sefimn the eastern border of
Germany is easy due to the fact that the road networks of Balad the Czech Republic do
not belong to our test instance.

Distance Instead of Travel Time. Using travel times as edge weights intensifies the hier-
archical properties of real world road networks, which s fbundation of our approach. If
we use spatial distance as edge weights, the road netwdrlexktbit a (less distinct) hi-
erarchy. We performed several experiments with the Germaa network using distances
as edge weights. In this case, the effect of self-similawtyich we observed during previ-
ous experiments, did not occur, i.e., the shrinking facemrdased when we used the same
neighbourhood sizél iteratively. However, we obtained good results for a higihweerar-
chy consisting of seven levels, where we doubled the neigtilomd size in each iteration
of the construction procedure, starting with 100. This tedr average query time of 32 ms;
the speedup in terms of the number of settled nodes compa@dkSTRA’S algorithm was
122.

47

Frequency (* 1 000 000)

log(Frequency)

25

0.5

[I I I I I I 1
1612 2000 2500 3000 3500 4000 4500 5163

#settled nodes

(a) linear scale

15

[T T T T T T I
1612 2000 2500 3000 3500 4000 4500 5163

#settled nodes
(b) logarithmic scale

Figure 6.7:Histogram of unidirectional queries in Europe. The minimand maximum
costs are given explicitly as x-axis labels. Note that intfe extreme outliers are not
visible because their frequency is very small. Queries fnmales that do not belong to the
largest connected component of the road network have begtedrsince they cause only
very small costs, which cannot be compared directly to therotalues.

48

Frequency (* 1 000 000)

25

15

0.5

)]

[I I I I
1595 2000 2500 3000 3500

#settled nodes
Figure 6.8:Histogram of unidirectional queries in the USA, an

lpro O

Figure 6.9:Unidirectional queries in Europe, clipped by a boundi
Each node is coloured by the costs of a search started from it.

49

I 1
4000 4339

alogaukig.6.7 (a).

easy

[, difficult

ng &mund Germany.

Chapter 7

Discussion

Conclusion

Starting from a simple definition of local search, we haveetlgyed nontrivial algorithms
for constructing and querying highway hierarchies. We haesented strong evidence that
highway hierarchies of the largest road networks curramgBd can be constructed in a few
hours, i.e., fast enough to allow daily updates. The spanswuption is only a small con-
stant factor of the input size. The query times around 8 msreme than fast enough for
interactive use. In particular, overhead for the user fater (and possible internet communi-
cation) will probably dominate the interactive delays. Dindy previous speedup techniques
that would achieve comparable speedup (bit vectors, geaneentainers) have prohibitive
preprocessing times for very large graphs.

Future Work

The current implementation supports only undirected gsaglh some points in this thesis,
we have indicated how the implementation can be generais#te future so that it can
deal with directed graphs. Even faster preprocessing isjarnssue for future work. We
see many small (and not so small) opportunities for imprasemObviously, parallelisa-
tion will yield a significant speedup. Adaptive neighbowtizes could benefit both the
construction and the query. The local nature of preprongssiakes it likely that highway
hierarchies can be quickly updated dynamically when ongwaddges (e.g., for taking traf-
fic jams into account) or a region of the network changes.heumore, multiple objective
functions can be handled by a single highway hierarchy th#te union of the highway
hierarchies for the individual objective functions. It seelikely that highway hierarchies
for multiple reasonableobjective functions have a very big overlap so that theioamwiill
still be useful.

Even faster queries are also interesting. For example pioedraffic simulations, mil-
lions of shortest paths queries are needed and there is nbheadefor a user interface.
Besides many small improvements (e.g. faster priority gae@a combination with other
speedup techniques seems interesting. In particular,etovs, geometric containers, or
landmarks give the search a strong sense of direction {Fig.that highway hierarchies
lack (Fig.7.2). Thus, these two basic approaches may complement oneeanoéh, we
could achieve a significant improvement if we restrictedsbarch space of our approach to

50

the intersection with the search space of a goal directetbapp (Fig.7.3). Moreover, the
higher levels of the hierarchy are so small that superlities or space may be tolerable as
long as the contributions of the lower levels can be incajeat efficiently.

Highway hierarchies are also promising for handling graiblas are too large for fast
internal memory and only fit on hard disks of PCs or into thevdlash memory of mobile
devices: The higher levels fit into fast memory and the lowegels are only searched lo-
cally. Hence, by packing local patches of the graph into #maesexternal memory block,
local searches should only need a small number of block seses

Figure 7.1:Schematic representation of the search space of a goaletiragproach. The
search froms andt does not spread uniformly into all directions, but tend$iorespective
goal.

Figure 7.2:Schematic representation of the search space of our appbaaed on high-
way hierarchies. The search frosrand¢ spreads uniformly into all directions. However,
in contrast to Fig7.1, the search space gets thinner and thinner.

Figure 7.3:Intersection of the search spaces represented irvEignd7.2

51

Bibliography

[1] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Fasalgorithms for the
shortest path problendournal of the ACM37(2):213-223, 1990.

[2] V. Batagelj and M. Zaversnik. A (m) algorithm for cores decomposition of net-
works. CoRR ¢s.DS/0310049, 2003.

[3] G.Booch, J. Rumbaugh, and I. Jacobsbine Unified Modeling Language User Guide
Addison-Wesley, 1999.

[4] U. Brandes, F. Schulz, D. Wagner, and T. Willhalm. Trapklnning with self-made
maps. In3rd Workshop on Algorithm Engineering and Experimeumtdume 2153 of
LNCS pages 132-144. Springer, 2001.

[5] U. Brandes, F. Schulz, D. Wagner, and T. Willhalm. Getieganode coordinates for
shortest-path computations in transportation netwoMGM Journal of Experimental
Algorithmics 9(1.1), 2004.

[6] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shortesth algorithms: Theory
and experimental evaluatioMath. Programming73:129-174, 1996.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stémtroduction to Algorithms
MIT Press, 2nd edition, 2001.

[8] R. B. Dial. Algorithm 360: Shortest-path forest with pgical ordering.Communi-
cations of the ACM12(11):632-633, 1969.

[9] E. W. Dijkstra. A note on two problems in connexion withaghs. Numerische Ma-
thematik 1:269-271, 1959.

[10] J. Fakcharoenphol and S. Rao. Planar graphs, negagightvedges, shortest paths,
and near linear time. 142nd IEEE Symposium on Foundations of Computer Scjence
pages 232-241, 2001.

[11] I. C. M. Flinsenberg. Route planning algorithms for car navigationPhD thesis,
Technische Universiteit Eindhoven, 2004.

[12] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and ts#s in improved network
optimization algorithmsJournal of the ACM34(3):596-615, July 1987.

[13] A. V. Goldberg and C. Harrelson. Computing the shonpash: A* meets graph theory.
Technical Report MSR-TR-2004-24, Microsoft Research 4200

52

[14] A.V. Goldberg and C. Harrelson. Computing the shonpash: A* meets graph theory.
In 16th ACM-SIAM Symposium on Discrete Algorithpeges 156-165, 2005.

[15] R. Gutman. Reach-based routing: A new approach to sesiopath algorithms opti-
mized for road networks. 16th Workshop on Algorithm Engineering and Experimgnts
2004.

[16] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basrstifie heuristic determina-
tion of minimum cost pathslEEE Transactions on System Science and Cybernetics
4(2):100-107, 1968.

[17] M. Holzer, F. Schulz, and T. Willhalm. Combining speeg-+techniques for shortest-
path computations. I18rd International Workshop on Experimental and Efficient Al
gorithms volume 3059 of. NCS pages 269-284. Springer, 2004.

[18] P. Klein, S. Rao, M. Rauch, and S. Subramanian. Fastetesi-path algorithms for
planar graphs. 126th ACM Symposium on Theory of Computipages 27-37, 1994.

[19] E. Kdhler, R. H. Mohring, and H. Schilling. Acceleran of shortest path and con-
strained shortest path computation. 4th International Workshop on Efficient and
Experimental Algorithms2005.

[20] U. Lauther. An extremely fast, exact algorithm for findishortest paths in static
networks with geographical background.Ntiinster GI-Days2004.

[21] U. Meyer. Single-source shortest-paths on arbitramyated graphs in linear average-
case time. IrL.2th Symposium on Discrete Algorithrpages 797-806, 2001.

[22] R. H. Mohring, H. Schilling, B. Schutz, D. Wagner, aiidWillhalm. Partitioning
graphs to speed up Dijkstra’s algorithm. 4th International Workshop on Efficient
and Experimental Algorithm&005.

[23] I. Pohl. Bi-directional searchivlachine Intelligencg6:124-140, 1971.

[24] R Development Core Team. R: A Language and Environn@ar$fatistical Comput-
ing. http://ww.r-project. org, 2004.

[25] P. Sanders and D. Schultes. Highway hierarchies hastaet shortest path queries. In
13th European Symposium on Algorithms (E2AP5. To appear.

[26] F. Schulz.Timetable information and shortest patf#hD thesis, Universitat Karlsruhe
(TH), Fakultat fur Informatik, 2005.

[27] F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s algomnition-line: an empirical case
study from public railroad transpoACM Journal of Experimental Algorithmics:12,
2000.

[28] F. Schulz, D. Wagner, and C. D. Zaroliagis. Using mldtiel graphs for timetable
information. In4th Workshop on Algorithm Engineering and Experimgmtdume
2409 ofLNCS pages 43-59. Springer, 2002.

53

http://www.r-project.org

[29] S. S. SkienaThe Algorithm Design ManuaBpringer, 1998.

[30] M. Thorup. On RAM priority queues. Ifth ACM-SIAM Symposium on Discrete
Algorithms pages 59-67, 1996.

[31] M. Thorup. Undirected single source shortest pathsiedr time. InFoundations of
Computer Sciengd 997.

[32] M. Thorup. Undirected single source shortest pathsigdr time.Journal of the ACM
46(3):362—-394, 1999.

[33] M. Thorup. On RAM priority queuesSIAM Journal on Computing0:86—109, 2000.

[34] M. Thorup. Compact oracles for reachability and apprate distances in planar
digraphs. Id2nd IEEE Symposium on Foundations of Computer Scjgages 242—
251, 2001.

[35] M. Thorup. Integer priority queues with decrease keganstant time and the single
source shortest paths problem. 36th ACM Symposium on Theory of Computing
pages 149-158, 2003.

[36] M. Thorup. Compact oracles for reachability and apprate distances in planar
digraphs.Journal of the ACM51(6):993-1024, 2004.

[37] M. Thorup. Integer priority queues with decrease keganstant time and the single
source shortest paths probledournal of Computer and System Scien&£%3):330—
353, 2004.

[38] M. Thorup and U. Zwick. Approximate distance oraclas38th ACM Symposium on
the Theory of Computingages 183-192, 2001.

[39] M. Thorup and U. Zwick. Approximate distance oraclésurnal of the ACM51(1):1—
24, January 2005.

[40] U.S. Census Bureau, Washington, DC. UA Census 2000 RIGiEe Files.
http://ww. census. gov/ geo/ ww/ tiger/tigerual/uatgr2k. htm,
2002.

[41] P.van Emde Boas, R. Kaas, and E. Zijlstra. Design andementation of an efficient
priority queue.Math. Syst. Theory10:99-127, 1977.

[42] D. Wagner and T. Willhalm. Geometric speed-up techagiior finding shortest paths
in large sparse graphs. Irith European Symposium on Algorithmslume 2832 of
LNCS pages 776-787. Springer, 2003.

[43] D. Wagner and T. Willhalm. Drawing graphs to speed upr&st-path computations.
In 7th Workshop on Algorithm Engineering and Experimep@95.

[44] T.Willhalm. Engineering Shortest Path and Layout Algorithms for Largaghs PhD
thesis, Universitat Karlsruhe (TH), Fakultat fur Infeatik, 2005.

[45] J. W. J. Williams. HeapsorCommunications of the ACM:347—-348, June 1964.

54

http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html

Appendix A

Canonical Shortest Paths

A.1 Modifications of DIJKSTRA’s Algorithm

We can modify DIKSTRA'S algorithm so that only canonical shortest paths are found
order to do so, three conditions must be fulfilled:

1. An elementin the priority queue is only updated if a shqutgh to the corresponding
node is found, andot if another path of the same length is found.

2. The adjacency list of a node is always processed in the seee

3. The priority queue has thHelFO property; i.e., if there is more than one minimum
element, then the older element is removed first. The age efeanent refers to the
lastdecreaseKepperation or to thénsertoperation if nodecreaseKepperation has
taken place.

Theorem 9 On these conditions, we claim thatlfiokSTRA finds the shortest path
P={(s....s ...t ... t)fromstot, then started frond’, it will find the corresponding
subpathP|, ., of P as the shortest path to Obviously, this implies tha®|, ... is found as
the shortest path froml to ¢'.

Proof: In order to obtain a contradiction, we assume thaikBTRA finds another shortest
path@ # P|y_, from s’ tot. We can write

1 /
S8 g g, e, ug,ug, t .0, t) and

— /
= (s,..., ¢,
/ /! /
s 8 U U, o0,)

= {

such thatu; # v, anduy # v;.

When the search is started frofpthe nodey; is settled before;. (Otherwiset’ would
be settled from:; because of Conditioh and the fact that the distance frothvia v, to ¢
is equal to the distance fromi via u; to t'.) Henced(s',v;) < d(s’,uy). Furthermore, we
haved(s’,u;) < d(s',v;) because during the search started frgm, is settled before .
Thus,d(s",uy) = d(s',v1).

Therefore, the search fromhsettles, beforeu,. (Otherwisey; would be settled before
v; because of Conditio.) We can conclude thai(s’, us) = d(s’,v2). We can use this

)

55

argument inductively to obtaid(s’, u,) = d(s’, v,), wherel = min{j, k}. Furthermore, we
can show thaty is settled before,,. We now distinguish three cases.

The case that > k& = ¢ cannot occur: When the search is started froamd whens” is
settled, then, has not been settled yet. (Otherwise, the shortest pdtbm s to ¢ would
be different.) Obviously, the nodg, cannot be in the priority queue with a smaller tentative
distance thad(s, ux). Furthermore, it cannot be in the queue with the same dist§rcuy,)
because in this case the shortest path feotm u;, would not pass by” due to Condition
3. For similar reasons, there cannot be a direct link frghto «,; of the same distance
d(s",uy). Therefore, aftes” has been settledy, is in the priority queue with the tentative
distanced(s, vx) = d(s,ux), while uy is not yet in the queue with this tentative distance.
Hence, due to Conditio8, v, would be settled before, so that the shortest path frosrto
t would be different fromP.

The case that = j < k cannot occur either. It is symmetric to the first case.

The case that = j = k remains. When the search is started frgrand whens” is set-
tled, neither:; noruy, is in the priority queue with the tentative distanti@’, u;) = d(s', vy).
(Otherwise, the shortest path froshto ¢ would not pass through’ due to Conditior3.)
Sincevy, is settled before;, we know that the edge”, v;) appears in the adjacency list of
s" before(s”, u;). Analogously, when the search is started fremnd whens” is settled,
neitherw; nor vy, is in the priority queue with the tentative distané®, u;) = d(s, vg).
According to Conditior2, the adjacency list of” is always processed in the same order.
Therefore,v;, is added to the queue beforg (or a decreaseKeyperation onv; is per-
formed first). Hencey, is settled before:; so that the resulting shortest path freno ¢ is
different from P, which is a contradiction. O

A.2 FIFO Priority Queues

While Conditionl and?2 are usually fulfilled automatically by any implementatidriboJk-
STRA’s algorithm, Conditior3 is in generahot guaranteed by a usual implementation of a
priority queue. However, for any given implementation of anority queue, we can ensure
Condition3 by adding a counter that is initially set to 0 and that coutitsnsertandde-
creaseKeyperations. When an element is inserted deareaseKegperation is performed
on an element, the current value of the counter is stored asestmp in addition to the
key of the element. When a comparison between two elemékds ace and the keys are
equal, then the counts are compared, which leads to an ugaous result.

The asymptotic complexity of the operations is not affectédwever, the constants can
rise if it is not possible to store both the key and the coumiria machine word.

56

	Introduction
	Preliminaries
	Shortest Paths and Dijkstra's Algorithm
	Highway Hierarchy

	Construction
	Fast Construction of the Highway Network
	Speeding up Construction
	Contraction of the Highway Network

	Query
	Multilevel Query Algorithm
	Collapse of the Vertical Dimension
	Abort-on-Success

	Implementation
	Data Structures
	Construction
	Query

	Experiments
	Environment and Instances
	Parameters
	Multilevel Queries

	Discussion
	Canonical Shortest Paths
	Modifications of Dijkstra's Algorithm
	FIFO Priority Queues

