Route Planning in Road Networks
 - simple, flexible, efficient -

Peter Sanders Dominik Schultes
Institut für Theoretische Informatik - Algorithmik II Universität Karlsruhe (TH)
http://algo2.iti.uka.de/schultes/hwy/
Utrecht, May 21, 2008

Route Planning

Task:

In a given road network, determine an optimal route from a given source to a given target

Applications:

\square route planning systems in the internet, car navigation systems,
\square traffic simulation, logistics optimisation

DIJKSTRA's Algorithm

the classic solution [1959]
$O(n \log n+m)$ (with Fibonacci heaps)

not practicable for large graphs

(e.g. European road network:
≈ 18000000 nodes)
bidirectional Dijkstra

improves the running time, but still too slow

Speedup Techniques

\leadsto general solution slow
Dijkstra: $\Omega(n+m)$

but:

for special cases there is still hope
\square additional data
\square preprocessing \rightsquigarrow auxiliary data
\square special properties of the graph
e.g., for road networks
e.g., node coordinates
e.g., 'signposts'
e.g., planar, hierarchical

Goals

Primary Goals:

\square fast query times
\square provably optimal results

Secondary Goals:

fast preprocessing / deal with large networkslow space consumptionfast update operationssimple
Highway Hierarchies

Highway Hierarchies

\square determine a hierarchy of highway networks /
\square classify roads by 'importance'

bidirectional query algorithm:

with increasing distance from source/target:
consider only 'more important' roads

Highway Hierarchies

Construction: iteratively alternate between
\square removal of edges that only appear on
shortest paths close to source or target

\square removal of low degree nodes

Highway Hierarchies

foundation for our other methods\square directly allows point-to-point queries
$\square 13$ min preprocessing
$\square 0.61 \mathrm{~ms}$ to determine the path length
\square (0.80 ms to determine path description)

\square reasonable space consumption (48 bytes/node) can be reduced to 17 bytes/node
\square Sanders, Schultes. ESA 2005, 2006.

Highway Hierarchies Star

Highway Hierarchies Star

\square combination of highway hierarchies with goal-directed search
\square slightly reduced query times (0.49 ms)
\square more effective

- for approximate queries or
- when a distance metric instead of a travel time metric is used

L] Delling, Sanders, Schultes, Wagner. DIMACS Challenge 2006.

Many-to-Many

Task: compute $|S| \times|T|$ distance table containing the shortest path distances
\square e.g., 10000×10000 table in 23 seconds
\square Knopp, Sanders, Schultes, Schulz, Wagner. ALENEX 2007.

Transit-Node Routing

Transit-Node Routing

very fast queries

Highway Hierarchies
foundation

Hwy-Node Routing allow edge weight changes

Motivation

Observations

1. For long-distance travel: leave current location via one of only a few 'important' traffic junctions, called access points
(\rightsquigarrow store all access points for each node)
[≈ 10 per node]
2. Each access point is relevant for several nodes. \rightsquigarrow
union of the access points of all nodes is small, called transit-node set
(\rightsquigarrow store the distances between all transit-node pairs)
[$\approx 10000^{2}$ distances]

Transit-Node Routing

Preprocessing:

\square identify transit-node set $\mathcal{T} \subseteq V$
\square compute complete $|\mathcal{T}| \times|\mathcal{T}|$ distance table
\square for each node: identify its access points (mapping $A: V \rightarrow 2^{\mathcal{T}}$), store the distances

Query (source s and target t given): compute

$$
d_{\mathrm{top}}(s, t):=\min \{d(s, u)+d(u, v)+d(v, t): u \in A(s), v \in A(t)\}
$$

Transit-Node Routing

Locality Filter:

local cases must be filtered (\rightsquigarrow special treatment)
$L: V \times V \rightarrow\{$ true, false $\}$

$$
\neg L(s, t) \text { implies } d(s, t)=d_{\text {top }}(s, t)
$$

Sanders/Schultes: Route Planning

Example

Experimental Results

\square very fast queries
(down to $4 \mu s,>1000000$ times faster than DIJKSTRA)
\square more preprocessing time (1:15 h) and space (247 bytes/node)winner of the 9th DIMACS Implementation Challenge 2006

\square Scientific American 50 Award 2007

Sanders, Schultes. DIMACS Challenge 2006.

Bast, Funke, Sanders, Schultes. Science, 2007.

Bast, Funke, Matijevic, Sanders, Schultes. ALENEX 2007.

Open Questions

\square How to determine the transit nodes?
\square How to determine the access points efficiently?
\square How to determine the locality filter?
How to handle local queries?

Open Questions

\square How to determine the transit nodes?
\square How to determine the access points efficiently?
\square How to determine the locality filter?
\square How to handle local queries?

Answer:

\square Use other route planning techniques!

Highway-Node Routing

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]
\square graph $G=(V, E)$ is given
\square select node subset $S \subseteq V$

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]
\square graph $G=(V, E)$ is given
\square select node subset $S \subseteq V$

\square overlay graph $G^{\prime}:=\left(S, E^{\prime}\right)$
determine edge set E^{\prime} s.t. shortest path distances are preserved

Query: Intuition

\square bidirectional
\square perform search in G till search trees are 'covered' by nodes in S

Query: Intuition

\square bidirectional
\square perform search in G till search trees are 'covered' by nodes in S
\square continue search only in G^{\prime}

Highway-Node Routing

\square use overlay graph concept iteratively
\square classify nodes by 'importance' using highway hierarchies
i.e., determine node sets $V=: S_{0} \supseteq S_{1} \supseteq S_{2} \supseteq S_{3} \ldots \supseteq S_{L} \quad 13$ min (crucial distinction from [Holzer, Schulz, Wagner, Weihe, Zaroliagis])
\square construct multi-level overlay graph 2 min
$G_{0}=G=(V, E), G_{1}=\left(S_{1}, E_{1}\right), G_{2}=\left(S_{2}, E_{2}\right), \ldots, G_{L}=\left(S_{L}, E_{L}\right)$
(advanced techniques needed)

Query Algorithm

\square node level $\ell(u):=\max \left\{\ell \mid u \in S_{\ell}\right\}$
\square forward search graph $\overrightarrow{\mathcal{G}}:=\left(V,\left\{(u, v) \mid(u, v) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right)$
\square backward search graph $\overleftarrow{G}:=\left(V,\left\{(u, v) \mid(v, u) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right)$
\square perform one plain Dijkstra search in $\overrightarrow{\mathcal{G}}$ and one in $\overleftarrow{\mathcal{G}}$

Proof of Correctness

Level 2

Level 1

shortest path from s to t in $G=G_{0}$

Proof of Correctness

Level 2

overlay graph G_{1} preserves distance from $s_{1} \in S_{1}$ to $t_{1} \in S_{1}$

Proof of Correctness

overlay graph G_{2} preserves distance from $s_{2} \in S_{2}$ to $t_{2} \in S_{2}$

Proof of Correctness

$$
\begin{aligned}
& \overrightarrow{\mathcal{G}}:=\left(V,\left\{(u, v) \mid(u, v) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right) \\
& \overleftarrow{\mathcal{G}}:=\left(V,\left\{(u, v) \mid(v, u) \in \bigcup_{i=\ell(u)}^{L} E_{i}\right\}\right)
\end{aligned}
$$

Memory Consumption / Query Time

different trade-offs

for example:

$\square 9.5$ bytes per node overhead $\longrightarrow 0.89 \mathrm{~ms}$
store complete multi-level overlay graph
$\square 0.7$ bytes per node overhead $\rightarrow 1.44 \mathrm{~ms}$ store only forward and backward search graph $\overrightarrow{\mathcal{G}}$ and $\overleftarrow{\mathcal{G}}$
$(\vec{G}$ and $\overleftarrow{\mathcal{G}}$ are independent of s and $t)$
query times using the so-called 'stall-on-demand' technique

Per-Instance Worst-Case Guarantee

guarantee for Europe: maximum search space size $=2148$ nodes

Dynamic Szenarios

\square exchange cost function

\square change a few edge weights

- update data structures

OR

- bypass the traffic jams
typically <2 min

$2-40 \mathrm{~ms}$ per changed edge
e.g., 3.6 ms in case of 100 traffic jams

Level 0
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7

Summary

\square deal with very large road networks
\square static point-to-point routing

- fastest query times
- fastest preprocessing
- lowest memory consumption
transit-node routing
highway hierarchies
highway-node routing
\square dynamic point-to-point routing
- exchange cost function
- change a few edge weights
\square compute distance tables

Recent Work

concerning highway-node routing

\square find simpler / better ways to determine the node sets
$S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
[contraction hierarchies]
\square parallelise the preprocessing
\square implementation for a mobile device
275 MB to store Europe, < 100 ms query time

Future Work

handle a massive amount of updatesdeal with time-dependent scenarios(where edge weights depend on the time of day)
allow multi-criteria optimisations

