
Sanders/Schultes: Route Planning 1

Route Planningin Road Networks
– simple, flexible, efficient –

Peter Sanders Dominik Schultes

Institut für Theoretische Informatik – Algorithmik II

Universität Karlsruhe (TH)

http://algo2.iti.uka.de/schultes/hwy/

Utrecht, May 21, 2008

http://algo2.iti.uka.de/schultes/hwy/

Sanders/Schultes: Route Planning 2

?

Route Planning
Task:
In a given road network, determine an optimal route

from a given source

to a given target

Applications:

� route planning systems in the internet, car navigation systems,

� traffic simulation, logistics optimisation

Sanders/Schultes: Route Planning 3

DIJKSTRA ’s Algorithm

the classic solution[1959]

O(nlogn+m) (with Fibonacci heaps)

ts
Dijkstra

ts
bidirectional
Dijkstra

not practicable

for large graphs

(e.g. European road network:

≈ 18 000 000 nodes)

improves the running time,

but still too slow

Sanders/Schultes: Route Planning 4

Speedup Techniques

 general solution slow Dijkstra: Ω(n+m)

but:
for special cases there is still hope e.g., for road networks

� additional data e.g., node coordinates

� preprocessing auxiliary data e.g., ‘signposts’

� special properties of the graph e.g., planar, hierarchical

Sanders/Schultes: Route Planning 5

Goals

Primary Goals:

� fast query times

� provably optimal results

Secondary Goals:

� fast preprocessing / deal with large networks

� low space consumption

� fast update operations

� simple

Sanders/Schultes: Route Planning 6

Highway Hierarchies

compute distance tables
[ALENEX 07]

[DIMACS 06]

goal−directed

Many−to−Many

HH Star

Hwy−Node Routing
allow edge weight changes

Transit−Node Routing
very fast queries

[WEA 07]

[DIMACS 06, ALENEX 07,
Science 07]

foundation
Highway Hierarchies

[ESA 05, ESA 06]

Sanders/Schultes: Route Planning 7

Highway Hierarchies

� determine a hierarchy of highway networks /

� classify roads by ‘importance’

bidirectional query algorithm:
with increasing distance from source/target:

consider only ‘more important’ roads

contracted network ("core")
= non−bypassed nodes
+ shortcuts

bypassed
nodes

Sanders/Schultes: Route Planning 8

Highway Hierarchies

Construction: iteratively alternate between

� removal of edges that only appear on

shortest paths close to source or target

N (s) N (t)

s t

Highway

� removal of low degree nodes

Europe

≈ 18 000 000 nodes

AMD Opteron 2.0 GHz

ts

Sanders/Schultes: Route Planning 9

Highway Hierarchies

� foundation for our other methods

� directly allows point-to-point queries

� 13 min preprocessing

� 0.61 ms to determine the path length

� (0.80 ms to determine path description)

� reasonable space consumption (48 bytes/node)

can be reduced to 17 bytes/node

}

Sanders, Schultes. ESA 2005, 2006.

Sanders/Schultes: Route Planning 10

Highway Hierarchies Star

compute distance tables
[ALENEX 07]

Many−to−Many
Hwy−Node Routing
allow edge weight changes

Transit−Node Routing
very fast queries

[WEA 07]

[DIMACS 06, ALENEX 07,
Science 07]

Highway Hierarchies
foundation

[ESA 05, ESA 06]

HH Star
goal−directed
[DIMACS 06]

Sanders/Schultes: Route Planning 11

Highway Hierarchies Star

� combination of highway hierarchies with goal-directed search

� slightly reduced query times (0.49 ms)

� more effective

– for approximate queries or

– when a distance metric instead of a travel time metric is used

Delling, Sanders, Schultes, Wagner. DIMACS Challenge 2006.

Sanders/Schultes: Route Planning 12

Many-to-Many

[DIMACS 06]

goal−directed
HH Star

Hwy−Node Routing
allow edge weight changes

Transit−Node Routing
very fast queries

[WEA 07]

[DIMACS 06, ALENEX 07,
Science 07]

Highway Hierarchies
foundation

[ESA 05, ESA 06]

Many−to−Many
compute distance tables

[ALENEX 07]

Sanders/Schultes: Route Planning 13

Many-to-Many

Given:

� graph G = (V,E)

� set of source nodes S⊆V

� set of target nodes T ⊆V

Task: compute |S|× |T| distance table

containing the shortest path distances

� e.g., 10 000× 10 000 table in 23 seconds

Knopp, Sanders, Schultes, Schulz, Wagner. ALENEX 2007.

Sanders/Schultes: Route Planning 14

Transit-Node Routing

compute distance tables
[ALENEX 07]

[DIMACS 06]

goal−directed

Many−to−Many

HH Star

Hwy−Node Routing
allow edge weight changes

[WEA 07]

Highway Hierarchies
foundation

[ESA 05, ESA 06]

Transit−Node Routing
very fast queries

[DIMACS 06, ALENEX 07,
Science 07]

Copenhagen
Berlin
Vienna

Munich
Rome
Paris

Brussels
London

Sanders/Schultes: Route Planning 15

Motivation

Sanders/Schultes: Route Planning 16

Observations

1. For long-distance travel: leave current location

via one of only a few ‘important’ traffic junctions,

called access points

(store all access points for each node) [≈ 10 per node]

2. Each access point is relevant for several nodes.

union of the access points of all nodes is small,

called transit-node set

(store the distances between all transit-node pairs) [≈ 10 0002 distances]

s t

Sanders/Schultes: Route Planning 17

Transit-Node Routing

Preprocessing:

� identify transit-node set T ⊆V

� compute complete |T |× |T | distance table

� for each node: identify its access points (mapping A : V→ 2T),

store the distances

Query (source sand target t given): compute

dtop(s, t) := min{d(s,u)+d(u,v)+d(v, t) : u∈ A(s),v∈ A(t)}

Sanders/Schultes: Route Planning 18

Transit-Node Routing

Locality Filter :

local cases must be filtered (special treatment)

L : V×V→{true, false}

¬L(s, t) implies d(s, t) = dtop(s, t)

Sanders/Schultes: Route Planning 19

Example

Sanders/Schultes: Route Planning 20

Experimental Results

� very fast queries

(down to 4 µs, > 1 000 000 times faster than DIJKSTRA)

� more preprocessing time (1:15 h) and space (247 bytes/node)

� winner of the 9th DIMACS Implementation Challenge 2006

� Scientific American 50 Award 2007

Sanders, Schultes. DIMACS Challenge 2006.

Bast, Funke, Sanders, Schultes. Science, 2007.

Bast, Funke, Matijevic, Sanders, Schultes. ALENEX 2007.

?
Sanders/Schultes: Route Planning 21

Open Questions

� How to determine the transit nodes?

� How to determine the access points efficiently?

� How to determine the locality filter?

� How to handle local queries?

Sanders/Schultes: Route Planning 22

Open Questions

� How to determine the transit nodes?

� How to determine the access points efficiently?

� How to determine the locality filter?

� How to handle local queries?

Answer:

� Use other route planning techniques!

Sanders/Schultes: Route Planning 23

Highway-Node Routing

compute distance tables
[ALENEX 07]

[DIMACS 06]

goal−directed

Many−to−Many

HH Star

Transit−Node Routing
very fast queries

[DIMACS 06, ALENEX 07,
Science 07]

Highway Hierarchies
foundation

[ESA 05, ESA 06]

Hwy−Node Routing
allow edge weight changes

[WEA 07]

Sanders/Schultes: Route Planning 24

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

� graph G = (V,E) is given

� select node subset S⊆V

Sanders/Schultes: Route Planning 25

Overlay Graph: Definition

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

� graph G = (V,E) is given

� select node subset S⊆V

� overlay graph G′ := (S,E′)

determine edge set E′ s.t. shortest path distances are preserved

Sanders/Schultes: Route Planning 26

Query: Intuition

� bidirectional

� perform search in G till search trees are ‘covered’ by nodes in S

s

t

Sanders/Schultes: Route Planning 27

Query: Intuition

� bidirectional

� perform search in G till search trees are ‘covered’ by nodes in S

� continue search only in G′

s

t

Sanders/Schultes: Route Planning 28

Highway-Node Routing

� use overlay graph concept iteratively

� classify nodes by ‘importance’ using highway hierarchies

i.e., determine node sets V =: S0⊇ S1⊇ S2⊇ S3 . . .⊇ SL 13 min

(crucial distinction from [Holzer, Schulz, Wagner, Weihe, Zaroliagis])

� construct multi-level overlay graph 2 min

G0 = G = (V,E),G1 = (S1,E1),G2 = (S2,E2), . . . ,GL = (SL,EL)

(advanced techniques needed)

Schultes, Sanders. WEA 2007.

Sanders/Schultes: Route Planning 29

Query Algorithm

� node level ℓ(u) := max{ℓ | u∈ Sℓ}

� forward search graph
−→
G :=

(

V,
{

(u,v) | (u,v) ∈
SL

i=ℓ(u) Ei

})

� backward search graph
←−
G :=

(

V,
{

(u,v) | (v,u) ∈
SL

i=ℓ(u) Ei

})

� perform one plain Dijkstra search in
−→
G and one in

←−
G

−→
G

←−
G

s t

Level 1

Level 2

Level 0

s1 t1

s2 t2

Sanders/Schultes: Route Planning 30

Proof of Correctness

s ts1 t1

Level 1

Level 2

s2 t2 Level 0
d0(s, t)

shortest path from s to t in G = G0

Sanders/Schultes: Route Planning 31

Proof of Correctness

s ts1 t1

Level 1

Level 2

s2 t2 Level 0

s1 s2 t2 t1
d1(s1, t1)

d0(s1, t1)

overlay graph G1 preserves distance from s1 ∈ S1 to t1 ∈ S1

Sanders/Schultes: Route Planning 32

Proof of Correctness

s ts1 t1

Level 1

Level 2

s2 t2 Level 0

s1 s2 t2 t1

s2 t2
d2(s2, t2)

d1(s2, t2)

overlay graph G2 preserves distance from s2 ∈ S2 to t2 ∈ S2

Sanders/Schultes: Route Planning 33

Proof of Correctness

−→
G

←−
G

s t

Level 1

Level 2

Level 0

s1 t1

s2 t2

−→
G :=

(

V,
{

(u,v) | (u,v) ∈
SL

i=ℓ(u) Ei

})

←−
G :=

(

V,
{

(u,v) | (v,u) ∈
SL

i=ℓ(u) Ei

})

Sanders/Schultes: Route Planning 34

Memory Consumption / Query Time

different trade-offs

for example:

� 9.5 bytes per node overhead→ 0.89 ms

store complete multi-level overlay graph

� 0.7 bytes per node overhead→ 1.44 ms

store only forward and backward search graph
−→
G and

←−
G

(
−→
G and

←−
G are independent of sand t)

query times using the so-called ‘stall-on-demand’ technique

Sanders/Schultes: Route Planning 35

Per-Instance Worst-Case Guarantee

1014

1012

1010

108

106

104

100

 0 500 1000 1500 2000

s-

t-
pa

irs

Search Space Size

Europe

guarantee for Europe: maximum search space size = 2 148 nodes

Sanders/Schultes: Route Planning 36

Dynamic Szenarios

� exchange cost function typically < 2 min

� change a few edge weights

– update data structures 2 – 40 ms per changed edge

OR

– bypass the traffic jams e.g., 3.6 ms in case of 100 traffic jams

Sanders/Schultes: Route Planning 37

Level 0
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7

Sanders/Schultes: Route Planning 38

Summary

� deal with very large road networks

� static point-to-point routing

– fastest query times transit-node routing

– fastest preprocessing highway hierarchies

– lowest memory consumption highway-node routing

� dynamic point-to-point routing

– exchange cost function

– change a few edge weights

� compute distance tables many-to-many

} highway-node routing

Sanders/Schultes: Route Planning 39

Recent Work

concerning highway-node routing

� find simpler / better ways to determine the node sets

S1⊇ S2⊇ S3 . . .

[contraction hierarchies]

� parallelise the preprocessing

� implementation for a mobile device

275 MB to store Europe, < 100 ms query time

Sanders/Schultes: Route Planning 40

Future Work

� handle a massive amount of updates

� deal with time-dependent scenarios

(where edge weights depend on the time of day)

� allow multi-criteria optimisations

