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1 Introduction

The Traveling Salesman Problem (TSP) is one
of the most famous NP-complete problems. A
weighted graph G with n vertices is given and we
have to find a cycle of minimum cost that visits
each of the vertices of G exactly once [Ski98].

Since the computation of an exact solution is
very expensive (under the assumption that P 6=
NP ), we are interested in approximate solutions
– at least for special cases. Particularly, we look
for an Polynomial Time Approximation Scheme
(PTAS), i.e., for any fixed error parameter ε >
0, the running time is bounded by a polynomial
in n and the costs of the computed tour does
not exceed (1+ε) ·OPT , where OPT stands for
the costs of an optimal tour.

The Metric TSP is a special case of the Trav-
eling Salesman Problem, where the edge costs
satisfy the triangle inequality. There is a sim-
ple factor 2 algorithm, which bases on Mini-
mum Spanning Trees and Eulerian tours [Vaz01]
and runs in O(m + n log n) [Ski98]. In 1976
Christofides presented a factor 3/2 algorithm
[Chr76], which runs in O(n3) [Ski98]. But, un-
fortunately, there is no PTAS for the Metric
TSP [ALM+92].

The Euclidean TSP is a special case of the
Metric TSP. For a fixed d, we consider n points
in Rd. The graph is complete and we use
the Euclidean distance as cost function, i.e.,

dist(x, y) =
(

d∑
i=1

(xi − yi)2
)1/2

. For the sake

of simplicity, we concentrate on d = 2, i.e., we
deal with n points in a plane. We now want to
describe a PTAS for the Euclidean TSP [Vaz01]
that bases on Dynamic Programming. In order
to be able to apply Dynamic Programming, we
first have to simplify the input and restrict the
solution space.

2 Basics

We define a bounding box as the smallest square
that encloses all n points. We set the length
of each edge of the square to L = 4n2. This
is possible by stretching all distances by an
appropriate factor. Obviously, an optimal tour
still stays an optimal tour (and vice versa).
We assume w.l.o.g. that n is a power of two so
that L = 2k is a power of two as well. Hence,
k = 2 + 2 log2 n = O(log2 n). On the square, we
define a unit grid.

L

Furthermore, we relocate every node of G to the
nearest gridpoint so that all nodes get integer
coordinates. Due to the following facts, the ef-
fect of this perturbation is bounded. A lower
bound for the length of the optimal tour OPT
is 2L because at least two nodes are situated at
opposite edges of the bounding box (otherwise,
we would choose a smaller bounding box). The
absolute error per node is bounded by

√
2 as

the maximum distance from an arbitrary point
to the nearest grid point is 1/

√
2 and we can-

not lose more than twice this distance. Hence,
the total absolute error is bounded by

√
2n.

Thus, we obtain a bound for the relative error
r ≤

√
2n

OPT ≤
√

2n
2L =

√
2n

8n2 = 1
4
√

2n
. We can con-

clude that ∀ε > 0 ∃n0 ∀n ≥ n0 : r ≤ ε. There-
fore, the relative error can be compensated by
an appropriate adjustment of ε.
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Now, we introduce a basic dissection of the
bounding box: the bounding box is divided by
two level 1 lines into four level 1 squares of size
L/2 × L/2. By four level 2 lines each level 1
square is divided into four level 2 squares of
size L/22 × L/22. This partition is continued
recursively until unit squares are obtained.

lev 2 sqL / 4

level 2 line

L / 2

level 1 line

level 1 square

L
In general, a level i square has size
L/2i × L/2i. We can interpret
the basic dissection as a 4-ary tree.
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Obviously, the depth of the tree is k and
the number of tree nodes amounts to
4k+1−1

4−1 = 4(2+2 log2 n)+1−1
3 = O(n4).

The lines of the basic dissection may be
crossed only at certain points, called portals.
Each square has one portal for each corner and
additional m − 1 portals for each edge, i.e.,
each square has a total of 4m portals. The
parameter m must lie in the interval [k/ε, 2k/ε].
Furthermore, m has to be a power of two. This
guarantees that a portal of a level i square is a
portal of a contained level i + 1 square as well.

The distance between two portals of a level i
square is L/(2im).

As already said, we want a tour to cross the
lines of the basic dissection only at portals. A
tour with this property is called well behaved :

Definition 1 A tour τ is well behaved w.r.t.
the basic dissection if it is a tour on the n points
and any subset of the portals.

Our goal is to find an optimal tour τ of this
type and show that ‖τ‖ ≤ (1 + ε)OPT , where
‖τ‖ stands for the length of the tour τ . However,
for the algorithm, it is necessary to introduce a
further restriction on the tour:

Definition 2 A tour τ that is well behaved
w.r.t. the basic dissection has limited crossings
if it visits each portal at most twice and is non-
self-intersecting.

We will only look for tours that are well be-
haved w.r.t. the basic dissection and have lim-
ited crossings. We can show that it is sufficient
to look only for such tours.

Lemma 1 Let the tour τ be well behaved w.r.t.
the basic dissection. Then there is a tour τ ′ that
is well behaved w.r.t. the basic dissection and
has limited crossings so that ‖τ ′‖ ≤ ‖τ‖.

This lemma holds because of the fact that re-
moving self-intersections by shortcutting can-
not increase the tour length due to the trian-
gle inequality. Hence, if we show that there is
a well behaved tour τ that is short enough, i.e.,
‖τ‖ ≤ (1 + ε)OPT , we know due to Lemma
1 that there is a well behaved tour with limited
crossings τ ′ that is short enough, too, because of
‖τ ′‖ ≤ ‖τ‖. If we look for the shortest well be-
haved tour with limited crossings τ ′′, we can be
sure that the tour that we find is short enough,
too, because of ‖τ ′′‖ ≤ ‖τ ′‖.

Therefore, we “only” have to

1. show that there is a well behaved tour that
is short enough (Section 4) and

2. find an optimal well behaved tour with lim-
ited crossings (Section 3).

3 Dynamic Programming

Let us first deal with the visit of one square.
As we look only for tours with limited
crossings, each portal can be used at most
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twice, i.e., it can be used 0, 1 or 2 times.
Since a square has 4m portals, there are
34m = nO(1/ε) possibilities. Furthermore, we
claim that there is no self-intersection inside the
square, i.e., “invalid pairings” are forbidden,

while “valid pairings” are allowed.

Each valid pairing corresponds to a balanced ar-
rangement of parentheses; thus, the number of
valid pairings is equal to the r-th Catalan num-
ber C(r) when 2r portals are used. C(r) can
be bounded by 22r (as there are 2r parentheses
and 2 types of parentheses (left and right)).
Furthermore, we know that each of the 4m
portals is visited at most twice, hence, 2r ≤ 8m.
This leads to C(r) ≤ 22r ≤ 28m = nO(1/ε).
Therefore, the number of valid pairings is
bounded by nO(1/ε).

Now, we can combine both results: there are
nO(1/ε) possibilities of portal usage and, for each
portal usage, there are nO(1/ε) possibilities of
valid pairings. This leads to a total of nO(1/ε) ·
nO(1/ε) = nO(1/ε) possibilities. Of course, only
the possibilities that cover all points inside the
square are useful.

The algorithm that we want to present
fills in the following 2-dimensional Dynamic
Programming table:

minimum level 0 level 1 . . .
costs square 1 sq. 1 . . . sq. 4 . . .

valid visit 1
valid visit 2
valid visit 3

.

.

.

The number of columns is equal to the number
of squares, which is equal to the number of
nodes in the 4-ary tree, which is in O(n4). The
number of rows is equal to the number of valid
visits, which is bounded by nO(1/ε). Hence, the
table size amounts to O(n4) · nO(1/ε) = nO(1/ε).

The table is filled using a bottom-up ap-
proach, i.e., we start at the leaves of the 4-ary
tree and use the results of the four children
squares to compute the visits of the corre-
sponding parent square. Let us have a look

at one valid visit of a parent square, specified
by the usage of the portals, which is repre-
sented by the green arrows in the given example.

Such a valid visit corresponds to one entry in
the Dynamic Programming table. Our goal is
the computation of the optimal length. Inter-
nally, there are less than 4m + 1 portals. This
leads again to 34m+1 = nO(1/ε) possibilities.
Furthermore, we consider all valid pairings
that are consistent with the external portal
usage. Again, using Catalan numbers, the
number of these valid pairings is bounded by
nO(1/ε). Thus, we have to regard a total of
nO(1/ε) · nO(1/ε) = nO(1/ε) possibilities. Each
possibility is composed by the appropriate valid
visits of the four children squares.

Since we have already computed the children
squares, we can just sum up the optimal length
of the appropriate visits of the children squares.
We compute the optimal length for each of the
nO(1/ε) possibilities and determine the minimum
length of all possibilities.

The total expense of this algorithm can be
bounded by “table size × expense per entry”
= nO(1/ε) · nO(1/ε) = nO(1/ε).

3



4 Losses

The arbitrary crossing of lines is forbidden. This
makes the Dynamic Programming approach
possible, but it leads to an increase of the tour
length.

portal
level i line

optimal tour optimal tour w.r.t.
the basic dissection

L
2im

The indirection is bounded by L/(2im). We
can notice that the indirection depends on the
level of the line, i.e., the lower the level the
greater the indirection. Due to this fact, we
can construct an example where the indirection
of an optimal tour that is well behaved w.r.t.
the basic dissection exceeds the given error
bound, namely an example where a level 1 line
is crossed multiple times.

L

y

� ��

� ��

� ��

� ��

� �	


�

�

��

��

��

��

��

��

��

L

y

� ��

� ��

� ��

� ��

� �	


�

�

��

��

��

��

��

��

��

���
�

���
�

x2x

x

In this example the length of the optimal tour
(green line) is OPT =

√
32+42

4 L + 2y + L and
the length of the optimal tour w.r.t. the basic
dissection (red line) is A =

√
2+

√
22+32

4 L+2y+L.
Since y ≤ L

2 , we obtain

A

OPT
≥

1.2549L + 2L
2 + L

1.25L + 2L
2 + L

= 1.0015

Hence, the selection of an error parameter ε <
0.0015 fails.

In order to bypass this problem, we randomize
the algorithm and generalize the concept of the
dissection: we select integers a, b, 0 ≤ a, b < L
at random, move each vertical line from x to
(x + a) mod L and each horizontal line from y
to (y + b) mod L. We obtain the (a, b)-shifted
dissection.

a

b

a
This generalization makes sure that any specific
line has a random level. For example, the
level of the middle line that we used for our
counter-example for the basic dissection is not
necessarily 1, but depends on the randomly
chosen parameter a. As the indirection depends
on the level of the line, we are interested in the
probability that a randomly chosen line has a
certain level in order to compute the expected
value of the indirection. Therefore, let us have a
look on the distribution of the levels of the lines.

There are 21 lines on level 1 (blue), 22 lines on
level 2 (green), 23 lines on level 3 (red), and
so on. Finally, there are 2k lines on level k.
Altogether, there are 2k+1 − 2 lines. Therefore,
the probability that a randomly chosen line has

4



level i is

p(i) =
2i

2k+1 − 2
=

2i

2L− 2
≤ 2i

L

As we already know, the maximum indirection
when a level i line is crossed is

x(i) =
L

2im

The expected value of the indirection X when
one randomly chosen line is crossed is

E(X) =
k∑

i=1

(
L

2im
· 2i

L

)
=

k

m

(∗)
≤ ε

[
(∗) because of m ≥ k

ε

]
In order to be able to compute the expected
value of the total indirection considering all line
crossings, we have to bound the number of cross-
ings. Let π be an optimal tour, and N(π) be the
total number of times π crosses horizontal and
vertical grid lines. Then we have

N(π) ≤
√

2 ·OPT

Proof:

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

N(π) = ‖π‖1 ≤
√

2 · ‖π‖2 =
√

2 ·OPT

‖π‖1 stands for the `1 norm (red line), ‖π‖2 for
the Euclidean norm (green line). Obviously, the
number of crossings of horizontal and vertical
grid lines is equal to the `1 norm of the tour
because we use a unit grid. The `1 norm and
the Euclidean norm differ by a factor of at most√

2. The length of the optimal tour OPT is
measured in the Euclidean norm. �

Hence, the expected value of the total indi-
rection Y is

E(Y ) = N(π) · E(X) ≤ N(π) · ε ≤
√

2ε ·OPT

Now we can use Markov’s Inequality, which is
in general

P (Y ≥ a) ≤ E(Y )
a

Here we select a := 2
√

2ε ·OPT and obtain

P (Y ≥ 2
√

2ε ·OPT ) ≤
√

2ε ·OPT

2
√

2ε ·OPT
=

1
2

That means that the probability that the error
bound 2

√
2ε is exceeded is less than or equal to

1/2. Actually, we want an error parameter ε
and not 2

√
2ε, but this is no problem as we can

choose a parameter ε′ > 0 such that 2
√

2ε′ = ε.
Of course, we can reduce the probability that
the indirection is too long to (1/2)c by repeating
the procedure for c different (a, b)-shifted dissec-
tions and choosing the shortest tour. Further-
more, we can derandomize the algorithm: we
just try all L2 = O(n4) dissections and, again,
choose the shortest tour.
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