
On the Development and Use of Differential Analyzers

Dominik Schultes

28. April 2004

Abstract

In this essay, we present the development of an important analogue calculating device, the
differential analyzer. Section 1 introduces the main purpose that this type of machine was
built for, namely the solution of differential equations and, in this context, the integration of
a function. Section 2 summarizes the most important milestones regarding the development
of mechanical differential analyzers. Section 3 deals with some typical applications. Section 4
concludes with some improvements of the differential analyzer that were achieved by replacing
mechanical parts with electrical ones. Furthermore, a short comparison of the differential
analyzer with the present-day technology is done.

1 Introduction

An ordinary differential equation of m-th order can be written in explicit form as y(m)(x) =
f(x, y(x), y′(x), y′′(x), . . . , y(m−2)(x), y(m−1)(x)) [Hei00, p. 153]. The function f is given, while
the function y has to be determined. To get started, let us deal with a very simple example,
namely m = 2 and f(x, y(x), y′(x)) = y(x). Thus, we have the following second-order differential
equation: y′′(x) = y(x). An equivalent notation of this equation is y(x) =

∫ ∫
y(x) dx dx. At this

point, the principle difficulty can be observed that arises when a differential equation has to be
solved: y appears on both sides of the equation, i.e., the value of the function y at the point x
depends on the integral of y. Furthermore, we can realize that integrals can play a distinct role
with respect to the solution of a differential equation. We will pick up on these points soon, but
first we want to introduce one physical example in order to demonstrate that differential equations
are not just a “toy” of mathematicians, but have direct reference to real world applications.

If a capacitor and a resistor appear in a series connection, the total voltage U sums up to
U(t) = Q(t)/C + R · I(t). Furthermore, the charge Q of the capacitor can be expressed by Q(t) =∫

I(t)dt. Hence, we obtain U(t) = 1/C
∫

I(t)dt + R · I(t) ⇐⇒ I(t) = 1/R
(
U(t)− 1/C

∫
I(t)dt

)
.

Thus, we have exactly the same situation as in the simple theoretical example. The current I at
the point of time t depends on the current I because I contributes to the integrand. A similar
example with an inductance and a resistor is presented in [Har49, p. 4].

The following basic strategy, which forms the foundation of a differential analyzer, can be used
to solve such differential equations.

1. Take an initial value y0 = y(0) = a.

2. Evaluate the right side of the equation, i.e., the integral, for a “small” ∆x and obtain a value
y1.

3. Use the obtained y1 as input and re-evaluate the right side.

4. Iterate.

The correct result is obtained for ∆x → 0, i.e., ∆x has to become an infinitesimal small dx.
Obviously, the main component of this strategy is the integrator (also often called planimeter

[Hor14, p. 190]), and the next section will present how such an integrator has been implemented
and what other parts are required for a differential analyzer, a machine that can solve differential
equations.
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2 Development of the Differential Analyzer

2.1 Basics

The first integrators and differential analyzers consisted only of mechanical components. In these
machines, a variable is represented by a shaft and the value of the variable by the rotation of the
shaft. In order to build an integrator that computes y =

∫
f(x) dx, we need some kind of gear

between a driving shaft x and a driven shaft y, where the ratio of the gear is specified by f(x).
When the shaft x is rotated by an infinitesimal small amount dx, the shaft y is rotated by f(x) dx,
and when we continue the rotation of x, the rotation of y sums up to

∫
f(x) dx. The prerequisite

for this method is the possibility of selecting continuously the appropriate gear ratio. [Har49, p. 5]
According to [Hor14, p. 190], the first attempts of implementing such a device took probably

place in 1814 and in the following years many other attempts followed, but the results were either
not adequately published or the machines were too inaccurate to be reliable. The breakthrough
was achieved by James Thomson, the brother of Lord Kelvin [Wil97, p. 201], published in 1876
[Hor14, p. 192]. His design (see Figure 1(a)) consists of a disk that is rotated by a driving shaft,
a cylinder that is connected with the driven shaft that represents the value of the integral, and
a sphere that is the “mediator” between the disk and the sphere. The sphere has always contact
with both the disk and the cylinder, but it can be placed to different positions on a line between
the center of the disk and the border. The farer the sphere is away from the center, the greater is
the gear ratio.

A simpler integrator can be built using two disks that are arranged perpendicular (see Figure
1(b)), one is connected with the driving shaft x, the other with the driven shaft y. Again, the
point of contact can be arbitrarily selected on a line between the center of the driving disk and
its border [Har49, p. 5].

(a) The disk-sphere-cylinder integrator (b) The disk-wheel integrator

Figure 1: Two types of integrators [Wil97, p. 202], [Har49, p. 5]

2.2 Bush’s Differential Analyzer at the MIT

While Lord Kelvin in 1876 already thought about the combination of several of his brother’s
integrators in order to solve differential equations [Har49, p. 7], it took 55 years until a first
differential analyzer could be realized. In 1931, Vannevar Bush constructed a working machine
at the MIT [Wil97, p. 203]. One major problem that Bush was able to master was the slip of
the mechanical parts that interacted only by friction. When several components of this kind are
combined, it is likely that the tension gets so big that the friction between two wheels is not
sufficient so that they slip; this, of course, leads to a falsification of the results. The way out that
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was successfully implemented by Bush is the installation of torque amplifiers for shafts that are
used simultaneously as output and input, i.e., a driven shaft that is also a driving shaft (for the
next component) is broken and a torque amplifier is installed inbetween. The amplifier takes the
driven shaft as input and rotates the outgoing driving shaft exactly the same way, but by more
power.

Figure 2: Principle of Bush’s torque amplifier (from the 1931 article by Bush, taken from [Wil00])

To achieve this aim, Bush took advantage of the principle of the ship’s capstan in a quite in-
ventive way. Figure 2 demonstrates his design. Both the input and the output shaft are connected
with an arm each. Around the shafts is a friction drum each. The frictions drums are continuously
rotated by a powerful motor. The input and output arms are connected by two threads that are
winded round one of the friction drums each. The rolling direction of the threads and of the
friction drums is important: looking at the amplifier on Figure 2 from the left, on the output
side, the friction drum rotates counter-clockwise and the cord from the input to the output arm
is winded clockwise, while on the input side, the friction drum rotates clockwise and the thread
is rolled counter-clockwise. The invariant of this system is that the input and the output arms
are always opposite to each other. The threads are so long that they are just loosely rolled round
the drums when the arms are exactly opposite to each other. When the input shaft is rotated in
either direction, exactly one of both threads is tensed. In order to tense a thread, only a minor
amount of power is required. Now, a friction between that thread and the corresponding friction
drum arises. Hence, the cord is pulled in the rolling direction of the drum – that is driven by
the powerful motor. Therefore, the output arm is pulled with much power. Due to the above
mentioned choice of the rolling directions of the friction drums and of the cords, it is ensured that
the output arm is always dragged in the correct direction, namely in the same as the input arm.
As soon as the output shaft – and consequently the output arm – approaches the correct position,
the thread is loosed and the friction decreases so that the output shaft does not overshoot the
mark. [Wil00]

Beside the integrators and amplifiers, Bush’s differential analyzer consisted of gears for constant
multiplications and gears for doing addition and subtraction [Wil97, p. 204].

Figure 3(b) demonstrates how a differential analyzer could be used to solve the introductory
example y′′(x) = y(x). The used schematic notation for an integrator is given in Figure 3(a).
For the sake of simplicity, the amplifiers are omitted. The right integrator integrates y (resp. y′′)
once and outputs

∫
y dx (resp. y′). The left integrator integrates the output of the right one and

outputs
∫ ∫

y dx dx (resp. the “new” y).

2.3 The Developments in the United Kingdom

Since Bush’s differential analyzer was able to solve a wide range of differential equations and
since such equations appeared in many applications – while it was usually difficult to solve them
without a machine –, there were many people that copied Bush’s machine. A common problem
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(a) Schematic notation for an integrator (b) Schematic notation for the differential analyzer

Figure 3: Setup for solving the equation y′′(x) = y(x) [Wil00]

for some of these imitators was to convince their financial backers of the usefulness of a differential
analyzer. An inventive solution for this problem was found by Douglas Hartree who built a model
of a differential analyzer together with A. Porter at the University of Manchester in 1934 [Har49,
p. 13]. The costs could be kept very low because almost every part of the machine was built
using Meccano, a kind of construction set that was a popular toy for boys at this time. Only
for the integrator disks, ground glass instead of a Meccano part was used, and some other parts,
particularly for the amplifiers, had to be built using other materials [Irw02]. The Meccano model
was surprisingly successful and its accuracy was in the order of 2% so that it could be used for
serious applications [Har49, p. 14]. Due to this success, one year later a full scale machine was
built by Metropolitan Vickers.

A similar way was chosen at the University of Cambridge at the instance of J. E. Lennard-
Jones. In 1935, J. B. Bratt built a model of a differential analyzer. Similar to Hartree’s machine,
Meccano was used for most parts apart from those that were crucial to the precision of the machine
[Wil85, p. 25]. In 1939, a full scaled machine replaced the Meccano model.

Of course, the development and the use of differential analyzers – inspired both by Bush’s
original work and by the British Meccano models – was not limited to the USA and the UK, but
spread out throughout Europe (e.g., Germany and Norway) and North America. For instance,
one Meccano machine was installed by Beatrice “Trixie” Worsley at the University of Toronto in
the early 1950s [Wil97, p. 205].

3 Applications

The development of the differential analyzer was advanced mainly by people who were interested
in the applications of the machine rather than in the machine itself from the engineering point
of view. Of course, the people who built those machines had to deal with mechanical problems
that arose and it can be observed that these problems were often dominant in comparison with
the theoretical problems that usually had been solved much earlier. For example, as already
mentioned, it took 55 years from Lord Kelvin’s theoretical deliberations regarding a differential
analyzer to Bush’s first realization. However, the applications were always the mainspring.

Lord Kelvin applied the planimeter developed by his brother to his tide calculating machine
(which is no actual differential analyzer, but shares one of its main components) [Hor14, p. 193].
Such a machine was quite important since it was able to predict the tide for a given time in the
future with sufficient accuracy. This information was essential for ships that called at a harbour
in order to judge if the tide was high enough to reach the harbour safely without touching some
rocks on the ground [Wil97, p. 198].
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Vannevar Bush dealt with differential equations related to the electric power network. He
started to solve the equations analytically, but he soon realized that this took far too much time
so that he decided to concentrate his efforts on the construction of a machine that would take
this time-consuming task over [Wil97, p. 204]. Similarly, Douglas Hartree was no engineer but
a physicist and, particularly, an expert in numerical methods of computation [Wil85, p. 107].
At the University of Cambridge, Maurice V. Wilkes used the differential analyzer for different
applications. He investigated the propagation of long-wave radio waves, supported E. Monroe in
solving a differential equation emerging in the two-centre problem in wave machines, and analysed
a model of graphite with respect to the interrelationship between the potential energy and the
situation of the carbon atoms [Wil85, pp. 25–27].

In [Har49, p. 25] some other applications are listed that demonstrate the wide range of use.
The examples belong to the fields of

• physics (e.g. “motion of electrified particles in the magnetic field of the earth”),

• electronics (e.g. “problems in non-linear electrical circuits”),

• chemistry (e.g. “chemical kinetics”), and

• scheduling (e.g. “running times of railroad trains”).

However, the most frequent field of application, at least during the Second World War, was
probably a military one – in fact across all borders, i.e., in the USA, in the UK and in Germany.
One common task was the computation of ballistic firing tables. For instance, with the help of
the MIT, the British tried to calculate the ballistic trajectory of the German V2 rockets [Wil97,
p. 206].

4 Further Developments and the State of the Art

4.1 Further Developments

While the first differential analyzers consisted exclusively of mechanical parts, during the further
development, more and more parts were replaced by electrical ones so that as intermediate step
electromechanical machines and finally purely electrical differential analyzers were built. The basic
concepts have never changed, i.e., on principle, the electrical parts that replaced the mechanical
ones fulfilled the same functionality as their predecessors.

Again, Vannevar Bush counts to the precursors. In 1945, he built together with S. H. Caldwell
a new differential analyzer at the MIT. While he still used mechanical integrators, he replaced
the mechanical connections between the shafts by electrical ones. The azimuth of the output
shaft about its axis is encoded by a pair of variable condensers into an electrical value. Similarly,
the azimuth of the input shaft that should be driven by the above mentioned output shaft is
represented by an electrical value. Both values are compared in order to calculate the difference,
which should be minimized. This comparison is done by a unit that controls a motor that drives
the input shaft so that both shafts are synchronized [Har49, p. 14].

Later on, differential analyzers were constructed where the remaining mechanical parts were
replaced by electrical ones. For instance, an electrical integrator can be built using a condenser
(see Figure 4).

The advantages of the electrical differential analyzer over the mechanical one are manifold.
First of all, the computation can be done much faster due to the high speed that electrical compo-
nents operate at. Furthermore, it is more convenient to setup the machine to an initial condition
as a control desk can be used for this purpose. In contrast, “setting up a mechanical differential
analyzer was not a job for anyone who liked to keep his hands clean” [Wil85, p. 30], because of
the fact that you had to deal directly with the oily shafts and gears.
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P is short for d
dτ

[KK56, p. 9].

Figure 4: An electrical integrator [KK56, p. 13]

4.2 State of the Art

Although the mechanical differential analyzers had already been very useful and electrical ones
were even much more sophisticated, this type of machine practically died out – because it was an
analogue one. In [Wil85, p. 123], the computer pioneer M. V. Wilkes describes his reaction when he
was asked in 1946 if there was a future for the differential analyzer: “This was not a question that I
had consciously considered, but I found myself saying no, and from that moment on I had no doubt
in my mind that the days of analogue devices for scientific computation were numbered.” But
why ? The advantages of digital machines had become visible. Nowadays, differential equations
are solved by numerical algorithms on a digital computer. On principle, these algorithms often
base on the same strategy as the differential analyzers, which is described in Section 1. However,
there is one essential difference. The numerical algorithms on digital computers always deal with
discrete steps [Hei00, p. 160], never with infinitesimal small ones as a differential analyzer does this.
Hence, at first sight, the analogue differential analyzer is better than a modern digital computer
because in theory it computes the exact result, while a digital computer only approximates the
solution. But, in practice, an analogue machine can never operate with 100% accuracy, i.e., it
deviates from the exact solution and the crucial disadvantage is the fact that it is barely possible
to set a bound for the deviation. Worse is the fact that it is generally not even possible to get a
bound for the deviation, i.e., you do not know how good the results are that you have obtained.
Of course, you can realize that usually the deviation is less than 1%, but if you get the results of
just one computation, you cannot exclude that this time the deviation is bigger because of some
missing oil, for example.

The numerical algorithms on digital computers have both properties. Firstly, for a given
algorithm and the selected parameters (particularly, the selected step size), you can compute an
error bound that is never exceeded. Secondly, you can choose the parameters of the algorithm in
order to set the error bound. In order to get better results, you have to reduce the step size – in
general, you do not have to build a new machine in order to improve the accuracy of the results.
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